INTRODUCTION

The data included in the 2014 SIA Factbook helps demonstrate the strength and promise of the U.S. semiconductor industry and why it is critical for policymakers to enact measures that boost growth and promote innovation.

The U.S. semiconductor industry is a key driver of America’s economic strength, global competitiveness, and technology leadership.

Semiconductors enable the systems and products that we use to work, communicate, travel, entertain, harness energy, treat illness, and make new scientific discoveries. Semiconductors make possible the global trillion dollar electronics industry. Semiconductors were invented in America, and the U.S. still leads the world in cutting-edge manufacturing and design.

In the semiconductor industry and across the broader tech sector, innovation is made possible through the hard work and ingenuity of the industry’s scientists and engineers and is supplemented by smart public policy from the federal government. At SIA, a common theme of the policies we support is that all of them are intended to maintain and accelerate technological advancements. The federal government plays a vital role in furthering these initiatives.

To help promote innovation and ensure America’s continued technology leadership, policymakers should do the following:

1. Facilitate open markets and protect intellectual property to fuel semiconductor industry growth.
2. Support federal funding for university research to discover the next generation of semiconductor technologies.
3. Streamline export controls to allow U.S. semiconductor companies to compete in the global market while protecting national security.
4. Strengthen America’s technology workforce by retaining the best and brightest scientific minds from around the world and increasing the number of American STEM graduates.
5. Reform the corporate tax system to enhance America’s competitiveness, boost U.S. design and manufacturing, and promote American innovation.
6. Improve the security and authentication of semiconductor products through partnerships with industry and government.
7. Promote sustainability practices and innovation development by ensuring that regulations meet the needs of the semiconductor industry.
List of Figures
(Page Numbers in Parentheses)

(1) SECTION 1: INDUSTRY OVERVIEW
 (2) The Global Semiconductor Industry is a Key Growth Sector in the Global Economy
 (3) The U.S. Semiconductor Industry has Over Half the Global Market Share
 (4) U.S.-Based Industry Semiconductor Sales have Displayed Steady Annual Growth
 (5) U.S.-Based Semiconductor Companies Maintain Market Share Leadership in Most Major Regional Semiconductor Markets
 (6) The Majority of Semiconductor Manufacturing Done in the United States is Done by U.S. Firms
 (7) The U.S. Semiconductor Industry Conducts the Majority of its Manufacturing in the United States
 (8) Semiconductors are one of America’s Top Exports

(9) SECTION 2: GLOBAL MARKET
 (10) Global Semiconductor Sales are Driven by Products Ultimately Purchased by Consumers
 (11) Global Semiconductor Sales are Diversified by Type of Product Sold
 (12) Today, Asia Pacific is by Far the Largest Regional Semiconductor Market

(13) SECTION 3: CAPITAL AND R&D INVESTMENT
 (14) Total Annual Levels of Investment in Capital and R&D are High for the Industry
 (15) Capital and R&D Investment are Critical to Maintaining a Competitive Semiconductor Industry
 (16) Investment in Capital Expenditures and R&D per Employee is Very High - It has Increased at a Rate of about 16 Percent per Year Over the Past 20 Years
 (17) Semiconductor Industry R&D Expenditures are Consistently High which Reflects the Inherent Importance of R&D to Semiconductor Firms
 (18) Annual R&D Expenditures as a Percent of Sales have Generally Exceeded 10 Percent Over the Past 20 Years, an Unprecedented Rate among U.S. Industries in the United States
 (19) The U.S. Semiconductor Industry Spends More on R&D as a Percent of Sales than any Other U.S. Industry
 (20) U.S. Semiconductor Industry Capital Expenditures Reached a Record High in 2011 with the Industry Continuing to Invest Significantly in Subsequent Years
List of Figures
(Continued)

(21) SECTION 4: JOBS
 (22) The U.S. Semiconductor Industry Accounts for a Quarter of the Million Direct Jobs and Over a Million Additional Indirect Jobs

(23) SECTION 5: PRODUCTIVITY
 (24) U.S.-Based Semiconductor Firms have Experienced Rapid Improvements in Productivity Over the Past 20 Years
Section 1

INDUSTRY OVERVIEW
Worldwide semiconductor sales increased from $77.3 billion in 1993 to $305.6 billion in 2013, an average annual rate of increase of 7.11 percent per year. According to the WSTS Fall 2014 Semiconductor Industry Forecast, worldwide semiconductor industry sales are forecast to reach $345 billion in 2015 and $355 billion in 2016.*

*WSTS, Fall 2014 Semiconductor Industry Forecast.
SECTION 1: INDUSTRY OVERVIEW

THE U.S. SEMICONDUCTOR INDUSTRY HAS OVER HALF THE GLOBAL MARKET SHARE

Semiconductor producers based in the Americas experienced a significant loss in market share during the 1982 to 1988 period. In the early 1980s, the Americas-based producers held more than 50 percent of worldwide semiconductor sales. Due to intense competitive pressure from Japan-based firms, the effect of illegal "dumping", and a severe industry recession in 1985 to 1986, the industry lost a total of nineteen worldwide market share points. Today, Americas-based firms have the largest market share with over 50 percent.

The industry in the Americas has rebounded strongly since the late 1980s. While largely exiting the DRAM market in the 1980s, its firms have maintained their competitive edge in microprocessors and other leading edge devices, and it has even gained in memory in recent years. Strong growth in these sectors enabled the industry to increase its market share to over half of the world market. Firms in Asia and Europe have grown in terms of their importance as suppliers as well.

Note: Market share based on headquarters of seller, i.e. foundry output not included in Taiwanese and Chinese market share. Numbers rounded.
Source: SIA/World Semiconductor Trade Statistics/iSuppli/PwC/IC Insights

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.
SECTION 1: INDUSTRY OVERVIEW

U.S.-BASED INDUSTRY SEMICONDUCTOR SALES HAVE DISPLAYED STEADY ANNUAL GROWTH

Sales of total worldwide semiconductor producers based in the Americas grew from $33.4 billion in 1993 to over $154.8 billion in 2013 -- a compound annual growth rate of 7.97 percent. Sales growth for U.S. companies shows the same cyclical fluctuations characterized by the industry as a whole.

In 2013, semiconductor firms based in the Americas held over 50 percent of the total semiconductor market. In all major markets other than Japan, U.S. headquartered companies held around half the market. In Japan, one of the world’s largest single country markets, U.S. firms held only 33 percent share – historically foreign headquartered companies have held a relatively lower share of the Japanese market than in all other markets.
SECTION 1: INDUSTRY OVERVIEW

THE MAJORITY OF SEMICONDUCTOR MANUFACTURING DONE IN THE UNITED STATES IS DONE BY U.S. FIRMS

In 2013, roughly 87 percent of all semiconductor wafer fabrication capacity in the United States was accounted for by U.S. headquartered firms. Semiconductor firms headquartered in the Asia Pacific region accounted for most of the balance of capacity in the United States at around 10 percent.

Percent of Wafer Capacity in the US by Headquarter Location

America 87.1%
Asia Pacific 10.3%
Europe 1.6%
Japan 0.9%

Source: IC Insights Global Fab Database and SIA Estimates.

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.
In 2013, about 56 percent of U.S.-headquartered firm wafer capacity was located in the Americas region. The Asia Pacific region was the second largest area, accounting for 27 percent of the total capacity.

Note: Figures are rounded to the nearest 10th.
Source: IC Insights Global Fab Database and SIA Estimates.
SECTION 1: INDUSTRY OVERVIEW

SEMICONDUCTORS ARE ONE OF AMERICA’S TOP EXPORTS

Electronic products such as computers and telecommunications equipment constitute the single largest U.S. export category, greater than $120 billion per year, and semiconductors are key components of nearly all electronic products. Exports of semiconductor components alone were worth $42 billion, second only to the export value of automobiles and aircraft.

Top 3 Manufactured U.S. Exports in 2013 ($ Bn)

- Aircraft $106 Billion
- Automobiles $56 Billion
- Semiconductors $42 Billion

Source: U.S. International Trade Commission. Industry defined by NAICS codes: 334413 (Semiconductors); 336411 (Aircraft); 336111 (Automobiles).

#1 U.S. Electronic Product Export in 2013 ($ Bn)

- Semiconductors
- Computer Equipment
- Telephone Apparatus
- Computers
- Radio and Television Broadcasting and Wireless Communication Equipment

Source: U.S. International Trade Commission. Industry defined by NAICS codes: 334413 (Semiconductors); 334119 (Computer Equipment); 334210 (Telephone Apparatus); 334111 (Computers); 334220 (Radio and Television Broadcasting and Wireless Communications Equipment).
Section 2

GLOBAL MARKET
Diversified and Consumer-driven
The vast majority of semiconductor sales demand is driven by products ultimately purchased by consumers - be they PC’s for home use and currently rapid developed mobile devices, such as cell phones and tablets. Increasingly, demand is also driven in emerging markets including those in Asia, Latin America, Eastern Europe and Africa.

2013 Total Global Semiconductor Market $306 Billion

Percent of Semiconductor $ Demand

- PC/Computer: 34.0%
- Communications: 32.5%
- Industrial/Gov’t: 14.3%
- Consumer: 9.7%
- Automotive: 9.5%

Note: Military is <1% and is included in Industrial.

Sources: World Semiconductor Trade Statistics.
Semiconductor technology has rapidly evolved as the industry develops more advanced product and process technologies for applications in end-use industries. In recent years, the largest segments of the worldwide semiconductor industry have been logic, memory, MPU, and analog. In 2013, these products accounted for 77 percent of semiconductor industry sales.

Distribution of Worldwide Semiconductor Sales By Product Segment 2013

<table>
<thead>
<tr>
<th>Product</th>
<th>Sales (B)</th>
<th>% Change over last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic</td>
<td>$86B</td>
<td>+5.2%</td>
</tr>
<tr>
<td>Memory</td>
<td>$67B</td>
<td>+17.6%</td>
</tr>
<tr>
<td>MPU</td>
<td>$41B</td>
<td>-1.9%</td>
</tr>
<tr>
<td>Analog</td>
<td>$40B</td>
<td>+2.1%</td>
</tr>
<tr>
<td>Opto</td>
<td>$28B</td>
<td>+5.2%</td>
</tr>
<tr>
<td>Discretes</td>
<td>$18B</td>
<td>-4.7%</td>
</tr>
<tr>
<td>MCU</td>
<td>$15B</td>
<td>+0.4%</td>
</tr>
<tr>
<td>Sensor</td>
<td>$8B</td>
<td>+0.4%</td>
</tr>
<tr>
<td>DSP</td>
<td>$3B</td>
<td>-21.4%</td>
</tr>
</tbody>
</table>

SECTION 2: GLOBAL MARKET

TODAY, ASIA PACIFIC IS BY FAR THE LARGEST REGIONAL SEMICONDUCTOR MARKET

The Asia Pacific market has quadrupled in size since 2001 - from $39.8 billion to over $174 billion in 2013. In the early 1980’s, the largest worldwide semiconductor market was the Americas. However, the Americas share of worldwide consumption eroded throughout the mid-to-late-1980’s. Japan became the largest regional market in 1986 largely due to its thriving electronics industry. The size of the Americas market surpassed Japan in 1993 due to the strength of its computer and telecommunications sectors. In 2001, the Asia Pacific market surpassed all other regional markets in sales as electronic equipment production shifted to the region. This data reflects sales of semiconductors to electronic equipment makers only - final products are then shipped for consumption around the world.

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.
Section 3

Capital and R&D Investment
A Driving Force in Maintaining a Competitive Semiconductor Industry
Total R&D and capital expenditures by U.S. semiconductor firms including fabless companies was $50.3 billion in 2013. During the 1993 to 2013 period, the average annual growth rate was approximately 20 percent. Investment levels in dollar terms have not been subject to fluctuations associated with the Silicon Cycle.
SECTION 3: CAPITAL AND R&D INVESTMENT

CAPITAL AND R&D INVESTMENT ARE CRITICAL TO MAINTAINING A COMPETITIVE SEMICONDUCTOR INDUSTRY

To remain competitive in the semiconductor industry, firms must continually invest a significant share of revenues in both R&D and new plants and equipment. The pace of technological changes in the industry requires that companies develop more complex process technology and introduce production machinery capable of manufacturing components with smaller feature sizes. The ability to produce state-of-the-art semiconductor components can only be maintained through a continual commitment to keeping pace with industry-wide investment rates of roughly 30% of sales. The need to stay on the leading edge of technology has resulted in some extreme fluctuations in years such as 2001, when sales declined precipitously but expenditures on R&D and capital equipment didn’t decline at the same rate.

Source: U.S. Semiconductor Companies’ Annual 10K Fillings to the USSEC and SIA Estimates.

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.
INVESTMENT IN CAPITAL EXPENDITURES AND R&D PER EMPLOYEE IS VERY HIGH - IT HAS INCREASED AT A RATE OF ABOUT 9 PERCENT PER YEAR OVER THE PAST 20 YEARS

From 1993 to 2013, total investment per employee (measured by combined R&D and new gross plant and equipment) has increased at a rate of about 9 percent per year. These expenditures exceeded $100K in 2001 but declined to roughly $85K in 2003 after the 2001 downturn. Investment per employee increased to over $100K in 2006. The 2008-2009 recession resulted in the decline of investment per employee in 2009 and 2010, but returned to an unprecedented level at 2012.
SECTION 3: CAPITAL AND R&D INVESTMENT

SEMICONDUCTOR INDUSTRY R&D EXPENDITURES ARE CONSISTENTLY HIGH WHICH REFLECTS THE INHERENT IMPORTANCE OF R&D TO SEMICONDUCTOR FIRMS

Semiconductor industry R&D expenditures grew at an average annual rate of approximately 38 percent during the 1993 to 2013 period. R&D expenditures by U.S. semiconductor firms tend to be consistently high, regardless of cycles in annual sales, which reflects the importance inherent in the industry of investing in R&D.

Source: U.S. Semiconductor Companies’ Annual 10K Fillings to the USSEC and SIA Estimates.

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.
SECTION 3: CAPITAL AND R&D INVESTMENT

ANNUAL R&D EXPENDITURES AS A PERCENT OF SALES HAVE GENERALLY EXCEEDED 10 PERCENT OVER THE PAST 20 YEARS, AN UNPRECEDENTED RATE AMONG U.S. INDUSTRIES IN THE UNITED STATES

R&D expenditures as a percent of sales have generally exceeded 10 percent over the past 20 years. This rate is almost unprecedented among major manufacturing sectors of the United States economy. While R&D expenditures as a percent of sales have exhibited some cyclical fluctuations, total expenditures (measured in dollar terms) have risen at an average annual rate of over 37 percent over the period. R&D expenditures are essential to the competitive position of firms within the semiconductor industry. The rapid pace of technological change requires constant advancements in process technology and device capabilities. The increase in R&D in 2001 and 2002 was caused by companies’ commitment to the future of technology despite the industry downturn. The 2003-2004 decrease was not due to a cut in R&D budgets but rather to a stronger than expected recovery in the industry which increased revenues faster than expected and R&D fell as a percentage of sales. After the decline during 2008-2010, the rate returned to 19 percent in 2013.

![Graph showing annual R&D expenditures as a percent of sales from 1993 to 2013.](image-url)
SECTION 3: CAPITAL AND R&D INVESTMENT

THE U.S. SEMICONDUCTOR INDUSTRY SPENDS MORE ON R&D AS A PERCENT OF SALES THAN ANY OTHER U.S. INDUSTRY

The rate of U.S. semiconductor industry R&D spending is unsurpassed in key high technology industrial sectors. Based on the 2013 EU Industrial R&D Investment Scoreboard, the semiconductor industry led all manufacturing sectors in the rate of R&D spending as a percent of sales.

R&D Expenditures as a Percent of Sales

<table>
<thead>
<tr>
<th>Sector</th>
<th>R&D Expenditure as a Percent of Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductors</td>
<td>18.9%</td>
</tr>
<tr>
<td>Mobile Telecommunications</td>
<td>17.7%</td>
</tr>
<tr>
<td>Pharmaceuticals & Biotechnology</td>
<td>15.7%</td>
</tr>
<tr>
<td>Software & Computer Services</td>
<td>11.5%</td>
</tr>
<tr>
<td>Support Services</td>
<td>8.6%</td>
</tr>
<tr>
<td>Media</td>
<td>7.1%</td>
</tr>
<tr>
<td>Technology Hardware & Equipment*</td>
<td>5.9%</td>
</tr>
<tr>
<td>Leisure Goods</td>
<td>5.3%</td>
</tr>
<tr>
<td>Electronic & Electrical Equipment*</td>
<td>4.3%</td>
</tr>
<tr>
<td>Equity Investment Instruments</td>
<td>4.2%</td>
</tr>
</tbody>
</table>

Note: *Excluding Semiconductors.

Source: The 2013 EU Industrial R&D Investment Scoreboard
U.S. SEMICONDUCTOR INDUSTRY CAPITAL EXPENDITURES REACHED A RECORD HIGH IN 2011 WITH THE INDUSTRY CONTINUING TO INVEST SIGNIFICANTLY IN SUBSEQUENT YEARS

Semiconductor industry gross capital expenditures grew at an average annual rate of approximately 9 percent during the 1993 to 2013 period. Capital expenditures declined over the 2001-2003 period due both to the completion of major new facilities during the 1999 - 2001 period and outsourcing to foundries. 2004 saw a rebound and in 2005 the industry was in a balanced position in terms of capital expenditures as a percentage of sales. In 2011, after a sharp decline in 2009, capital expenditures reached $19 billion---an all time high.
SECTION 4: Jobs

THE U.S. SEMICONDUCTOR INDUSTRY ACCOUNTS FOR A QUARTER OF A MILLION DIRECT JOBS AND OVER A MILLION ADDITIONAL INDIRECT JOBS

Source: U.S. Bureau of Labor Statistics and SIA estimates
Section 5

Productivity
U.S.-BASED SEMICONDUCTOR FIRMS HAVE REPORTED RAPID IMPROVEMENTS IN PRODUCTIVITY OVER THE PAST 20 YEARS

Semiconductor industry labor productivity has increased over fourfold since 1993. These productivity gains have been made possible by maintaining high capital investment levels and R&D spending rates. In 2013, the U.S. semiconductor industry recorded an average sales revenue per employee ratio of over $424,000, slightly decreased from $442,600 in 2011 - an all time high.

Note: Employees reflect U.S. global employment.
Source: U.S. Semiconductor Companies’ Annual 10K Fillings to the USSEC and SIA Estimates.

(C) 2014 Semiconductor Industry Association All Rights Reserved. Reproduction in any form, in whole or part, without written permission is prohibited by law.