INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS

2007 Edition

LITHOGRAPHY

THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS PERTAINING TO INDIVIDUAL PRODUCTS OR EQUIPMENT.

TABLE OF CONTENTS

1
4
10
28
28
28
28
29
30
30

LIST OF FIGURES

Figure LITH1	Plot of Normalized Cost of Ownership as a Function of Several Normalized Input Variables	3
Figure LITH2	Schematic Process Flows for Double Exposure, Double Patterning, and Spacer Double Patterning	6
Figure LITH3	Double Patterning: Uncorrelated Exposures versus Correlated Exposures— Critical Features	7
Figure LITH4	Double Exposure Cross-Section Showing Critical Dimensions	7
Figure LITH5	Lithography Exposure Tool Potential Solutions	27

LIST OF TABLES

Table LITH1	Various Techniques for Achieving Desired CD Control and Overlay with Optical Projection Lithography	4
Table LITH2	Lithography Difficult Challenges	
Table LITH3a	Lithography Technology Requirements—Near-term Years	12
Table LITH3b	Lithography Technology Requirements—Long-term Years	13
Table LITH4a	Resist Requirements—Near-term Years	14
Table LITH4b	Resist Requirements—Long-term Years	15
Table LITH4c	Resist Sensitivities	16
Table LITH5a	Optical Mask Requirements—Near-term Years	17
Table LITH5b	Optical Mask Requirements—Long-term Years	
Table LITH5c	EUVL Mask Requirements—Near-term Years	20
Table LITH5d	EUVL Mask Requirements—Long-term Years	21
Table LITH5e	Imprint Template Requirements—Near-term Years	23
Table LITH5f	Imprint Template Requirements—Long-term Years	24
Table LITH6a	Maskless Technology Requirements—Near-term	26
Table LITH6b	Maskless Technology Requirements—Long-term	26

LITHOGRAPHY

SCOPE

In 2007 and beyond, maintaining the rapid pace of half pitch reduction requires overcoming the challenge of improving and extending the incumbent optical projection lithography technology while simultaneously developing alternative, next generation lithography technologies to be used when optical projection lithography is no longer more economical than the alternatives. Significant technical challenges exist in extending optical projection lithography at 193 nm wavelength using high-index immersion lenses and also in developing multiple exposure techniques. Not only is it necessary to invent technical solutions to very challenging problems, it is critical that die costs remain economical with rising design costs, process development costs, mask costs, and cost of ownership of the tool and process. Extending optical projection lithography and developing next generation lithographic technology requires advances in these areas:

- Exposure equipment
- Resist materials and processing equipment
- Mask making, mask-making equipment, and materials
- Metrology equipment for critical dimension measurement, overlay control, and defect inspection

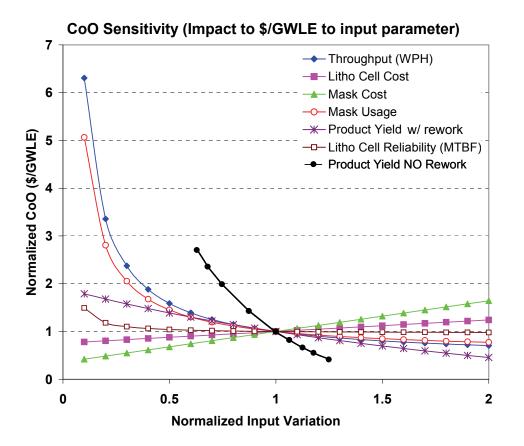
This chapter provides a fifteen-year roadmap defining lithography's difficult challenges, technology requirements, and potential solutions. Additionally, this chapter defines the Lithography International Technology Working Group (ITWG) interactions with and dependencies on the crosscut TWGs for *Design, Front End Processing* (FEP), *Process Integration, Devices, and Structures* (PIDS), *Environment, Safety, and Health* (ESH), *Yield Enhancement, Factory Integration, Metrology*, and *Modeling and Simulation*.

The key requirements of lithography for manufacturing integrated circuits are summarized below:

- *Critical Dimension (CD) Control*—The size of many features in a design needs to be precisely controlled. CD control needs to be maintained within each exposure field, over each wafer and from wafer to wafer. CD control is required for obtaining adequate transistor, interconnect and consequently overall circuit performance.
- *Overlay*—The placement of the image with respect to underlying layers needs to be accurate on each integrated circuit in all locations to achieve adequate yield.
- *Defect Control*—The desired pattern must be present in all locations, and no additional patterns should be present. No particles should be added to the wafer during the lithography process.
- *Low Cost*—The cost of tools, materials (including resists), and masks needs to be as low as possible while still meeting the CD control, overlay, and defect control requirements. To minimize cost, the lithography step should be performed as quickly as possible. Masks should be used to expose as many wafers as possible. Equipment needs to be reliable and ready to expose wafers when needed.

Since each of the many layers in a device requires patterning, the lithography process is a major part of the cost of manufacturing integrated circuits. Typically, at least four layers are critical layers requiring the most advanced lithographic tool available. These include: the isolation or active layer; the gate layer; the contact hole layer to contact the gates, source and drain to the first interconnect layer; and the first interconnect wiring layer. Several of the initial interconnect wiring and via layers and the channel implant layers might also be exposed on the most advanced lithography tools. Novel device structures might also introduce several additional critical layers. Lithography, including masks and resist, and associated metrology currently comprises 30–40% of the entire cost of semiconductor manufacturing. This fraction depends strongly on the product mix, volume of ICs in demand per design, and age of equipment in the factory. Cost of ownership (CoO) modeling is often used to quantitatively compare lithography technology and or process options. The cost of a process is typically measured in cost per wafer, per process layer, or per die. Cost of lithography is usually quantified in terms of cost per good wafer level exposed. The cost of ownership of lithography, expressed as cost per wafer level exposed (PWLE), can be quantified as:

 $C_{pwle} = (C_e + C_l + C_f + C_c + C_r Q_{rw} N_c) / N_g + C_m / N_{wm}$


where:

 $C_{pwle} = cost per wafer level exposure$

 C_e = yearly cost of exposure, coating, and pattern transfer equipment (including depreciation, maintenance, and installation)

 $C_{l} = \text{yearly cost of labor}$ $C_{f} = \text{yearly cost of cleanroom space}$ $C_{c} = \text{cost of other consumables (condenser, laser diodes)}$ $C_{r} = \text{cost of resist}$ $Q_{rw} = \text{quantity of resist used per wafer}$ $N_{c} = \text{number of wafers coated}$ $T_{net} = \text{net throughput} = \text{raw throughput * utilization}$ $N_{g} = \text{number of good wafers levels exposed (GWLE)} = \int T_{net} Y_{L} dt; Y_{L} = \text{yield of lithography, t=time}$ $C_{m} = \text{cost of mask}$ $N_{wm} = \text{number of wafers exposed per mask}$

 C_e is determined from the price of the equipment including installation costs. This cost is allocated to each year using depreciation, which is typically assumed to be accounted for as straight-line depreciation over five years. In practice, the terms that usually have the greatest effect on cost of ownership are Ce, Tnet, Cm, and Nwm. Figure LITH1 shows the sensitivity of the normalized cost of ownership to these many factors. Yield has the largest effect followed by throughput (Tnet) and mask usage (Nwm). Although the lithography cell cost continues to increase, the cost per bit continues to decline because of increasing throughput even at the higher bit densities.

Figure LITH1 Plot of Normalized Cost of Ownership as a Function of Several Normalized Input Variables

Since the earliest days of the microelectronics industry, optical lithography has been the mainstream technology for volume manufacturing, and it is expected to continue as such through the 32 nm half-pitch technology generation. The resolution of optical projection lithography is limited by diffraction as described by the Rayleigh equation. The minimum half pitch, R, resolvable for a diffraction limited optical projection system is given by:

$$R = k_1 \frac{\lambda}{NA}$$
[1]

where λ is the exposure wavelength and *NA* is the numerical aperture, which equals $n\sin\alpha_0$ where *n* is the minimum index of refraction of the imaging medium, final lens element or resist. α_0 is the maximum half angle of rays focused by the lens to the image when the lens is used to image in air or vacuum. K_1 is a process dependent factor determined mainly by the resist capability, the tool control, reticle pattern adjustments and the process control. It should be noted that lines may be printed at dimensions smaller than the minimum half pitch. The physical limitation of lithography is the minimum distance between adjacent features, namely pattern pitch.

Focusing errors, or defocus, lower the definition and contrast of the image, alter the CDs in resist and limit exposure latitude. The focus latitude, or depth of focus (DOF), expected at a single point in an exposure field is¹:

$$DOF = k_3 \frac{\lambda}{n \sin^2 \left\lfloor \frac{1}{2} \sin^{-1} \left(\frac{1}{n} \sin \alpha_o \right) \right\rfloor}$$
[2]

When *n*=1 and when *NA*<0.8, depth of focus becomes:

$$DOF \approx k_2 \frac{\lambda}{NA^2}$$
[3]

Constants, k_2 and k_3 , are dependent on the tool, process, pattern size and pattern geometry. Therefore, the trends in optical lithography are towards using smaller wavelength, higher *NA* imaging systems and smaller k_1 values to allow the printing of more dense patterns. The resolution and depth of focus scaling of lithography technologies using 193 nm, 193 nm with immersion and extreme ultraviolet (EUV) lithography projection imaging systems are governed by equations 1–3.

To continue as the dominant technique for leading edge critical layer lithography, the application of resolution enhancement techniques (RET) such as off-axis illumination (OAI), phase shifting masks (PSM), and optical proximity corrections (OPC) are being used with imaging systems at 193 nm wavelength. In addition to resolution enhancement techniques, lenses with increasing numerical apertures, and decreasing aberrations will be required to extend the life of optical lithography. Liquid immersion imaging with a fluid between the final lens element and the wafer is also being used as a means of extending optical lithography. Table LITH1 shows the progression of RET and techniques being used to extend optical lithography. It becomes much more difficult and expensive to implement OPC and resolution enhancement at each successive technology generation. Water as an immersion fluid can increase the NA to 1.35, but high index materials are required to extend the NA beyond 1.35. Table LITH3 shows the required numerical apertures needed to enable each half-pitch. The fluid index of refraction required is approximately NA/0.93.

¹ Burn Lin, "The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography, "Journal of Microlithography, Microfabrication and Microsystems 1(1), 7–12, April 2002.

Overay win Opical Pojecion Eurography								
MPU M1 contacted ½ pitch	160 nm	120 nm	90 nm	65 nm	45 nm	32 nm		
k ₁ Range [A]	0.48-0.52	0.47–0.53	0.40-0.43	0.31–0.40	0.28-0.31	0.18-0.28		
Design rules	Allow OPC and PSM, SRAF			Litho friendly design rule	S			
Restrictions (cumulative)		Pitch and orientation	Contact locations, library cells checked for OPC compatibility and printability	Features on grid	Restricted feature set	Double exposure compatible design		
Masks (Optical proximity correction)	Model-based OPC (MBOPC) on critical layers, SRAF on gate layer		SRAF on critical layers, corrected layout with lation	Model-based OPC with vector simulation, SRAF, polarization corrections	Model-based OPC with vector simulation, SRAF, polarization corrections, variation of OPC intensity by location in circuit?	Model-based OPC with vector simulation, SRAF, polarization corrections, variation of OPC intensity by location in circuit?, magnification increase?		
(Gate and M1 layer mask type)	cPSM ar	nd EPSM	APSM, EPSM and hiT EPSM	APSM, hiT EPSM, dual dipole	APSM, hiT EPSM, dou larger pitch	ble exposure with 2×		
(Contacts/vias layers mask type)	EP	SM		APSM, EPSM, HIT PSN	APSM, hiT EPSM, double exposure with 2x larger pitch			
Resist								
Thickness	<400 nm	<350 nm	<280 nm	<225 nm	<160 nm	<120 nm		
Substrate	ARC, ha	rd masks	А	RC, hard masks, top coa	ats	ARC, hard masks, top coats, contrast enhancing layers		
Etch			Post development r	esist width reduction				
Tool		berrations, automated a control	d Aberration monitoring Aberration monitor and adjustment					
(Illumination)	Off-axis illumination	Quadrupole	Custom illumination	Custom ille	umination, polarization c	ptimization		
(Dose control)	Cross wafer dose adjustments	C	Dose adjustment across the wafer and along scan across wafer, across waf					
(Process control (CD and overlay)	Automated pr	ocess control with down	loaded offsets		control with downloade tegrated in lithography c			

Table LITH1Various Techniques for Achieving Desired CD Control and
Overlay with Optical Projection Lithography

MBOPC—model based optical proximity correction EPSM—embedded PSM HiT—high transmission DE/DP—double exposure/processing cPSM—complementary PSM ARC—antireflection coating APSM—alternating PSM SRAF—sub-resolution assist features

The requirements of 32 nm half pitch and beyond are viewed as likely to be beyond the capabilities of optical lithography at 193 nm wavelength unless high-index fluids, high-index lens materials, and higher-index resist are developed or multiple exposure techniques are employed. Another option to extend the lifetime of optical projection lithography with immersion to 32 nm half pitch and beyond is to decompose the pattern to use two or more masks. However, this technique must be less expensive than alternative technologies. Extension of the Roadmap will probably require the development of next-generation lithography (NGL) technologies, such as EUV, maskless (ML2), imprint lithography, and directed self-assembly in the long term. Because next generation lithographies will require the development of substantially new infrastructure, a key challenge is to implement them as economical manufacturing solutions.

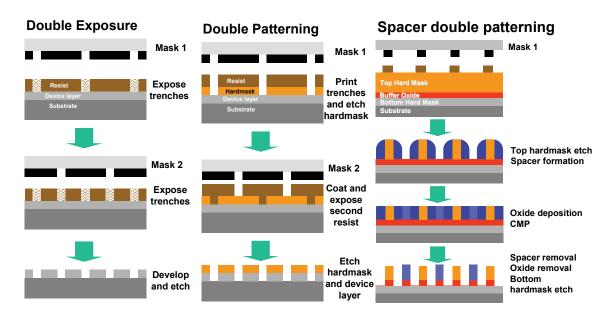
DIFFICULT CHALLENGES

The ten most difficult challenges to the continued shrinking of minimum half pitch are shown in Table LITH2. Many of the challenges are associated with variability control and not just scaling. Variability control not only must keep up with dimensional scaling, but often needs to improve even faster than dimensional scaling. Mask-making capability and cost escalation continue to be critical to future progress in lithography and will require continued focus. As a consequence of prior aggressive Roadmap acceleration—particularly the MPU gate line width (post etch), and increased mask error enhancement factor (MEEF) associated with low k_1 lithography—mask line width control appears as a particularly

significant challenge going forward. Mask equipment and process capabilities are in place for manufacturing masks with complex OPC and PSM, while mask processes for post-193 nm technologies are in research and development. The difficulty of defect control, CD control, and pattern placement accuracy increases significantly with each technology generation, requiring the development of ever more capable mask fabrication equipment. The number of leading-edge mask fabrication facilities is small, making it difficult for suppliers of these tools to develop the increasingly complex tools. Mask damage from electrostatic discharge (ESD) has long been a concern, and it is expected to be even more problematic as mask feature sizes shrink. Progressive defect formation has become an increasing problem with organic and inorganic deposits forming on masks after exposure of many wafers.

Although $1\times$, $5\times$, and $10\times$ magnification factors have been used, the predominant magnification factor of $4\times$ maximizes the printed field on the wafer that can be accommodated with a single mask and balances the challenge of mask fabrication. Several issues are driving the renewed discussion of increasing magnification factor. Mask costs have increased significantly due to the prevalent use of complex RET. Masks with higher demagnification might be significantly less expensive than $4\times$ masks. The use of NA>0.9 in air and use of NA>1.2 with immersion lithography have made lens size and volume increase dramatically. Stage speeds and exposure tool productivity have significantly increased, permitting better throughput. Furthermore, mask feature dimensions at $4\times$ are now comparable to or less than the wavelength, and these features partially polarize the transmitted radiation. When feature sizes are in the range of 0.5 to two times the wavelength, the mask patterns partially polarize the transmitted radiation in the transverse electric (TE) polarization state. This polarization will be manifested as dose variation in systems that do not have purely and uniformly polarized illumination of the mask at all locations. Software for designing resolution-enhanced masks, such as embedded or alternating phase shift masks, will require more complex rigorous electromagnetic models. Polarization by mask features might eventually lead the industry to strongly consider using greater than a $4\times$ demagnification factor. Besides lowering mask cost and lens cost, the usable exposure field size will decrease at higher magnification, impacting the size of chip designs that can be fabricated without using stitching.

To achieve demanding CD control tolerances, resolution enhancement techniques, design restrictions, and automated process control are being employed, as shown in Table LITH1. To further enable the extension of optical lithography, new practices are required to better comprehend the increasing variation of critical dimensions as a fraction of the feature size in the design process. These practices are usually referred to as "design for manufacturing (DFM)" practices. DFM practices will allow designers to account for manufacturing variations during circuit design optimization, and DFM will allow the IC fabrication process to be optimized to provide highest performance and minimal cost. Ultimately, the designer could optimize the circuit with knowledge of all physical variations in the fabrication process and their statistical distribution. At the simplest level, designers are being made aware of library cells that have yielded well in manufacturing. Furthermore, simulations of the lithography, etch, and CMP processes are being used to examine the full chip area for weak spots in the layout that are most susceptible to manufacturing variations. Coordinates of these weak points are provided to mask and wafer CD metrology tools. Focus and exposure are optimized for printing weak spot regions with maximum process latitude rather than for test structures. The topographical features of these printed weak spots will need to be evaluated with pattern fidelity metrology. These weak spot locations are then targeted for layout modification and monitoring in the manufacturing process. Automation of software analysis of weak spots in design and feedback to physical layout of cells is being aggressively pursued by electronic design automation (EDA) suppliers. DFM tools and techniques will be essential to minimize mask revisions and achieve adequate yield in the wafer fab. See the Design chapter for more information on DFM.


While lithography has long helped significantly reduce cost per function of integrated circuits by enabling patterning at higher density, maintaining historical levels of cost control and return-on-investment (ROI) are becoming increasingly difficult. These issues of mask and lithography costs are relevant to optical as well as next-generation lithography. To be extended further, optical lithography will require new resists that will provide both good pattern fidelity when exposed under immersion in water or perhaps alternative fluids and that have improved performance during etch. More complicated masks will be required, and fabricating these masks will require new and improved mask-making equipment and materials. Transitioning to 450 mm diameter wafers will require advances in exposure tool stage design and in coating technology on tracks. These improvements will require additional development expenditures.

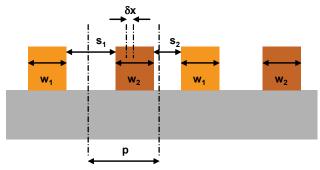
MPU gate CD control requirements will stress many other aspects of lithography process control, including lenses, resist processing equipment, resist materials, and metrology. Process control, particularly for overlay and CD, is a major challenge. In addition, inherent roughness on small gate widths starts to add a non-negligible component to CD uniformity. It is unclear whether metrology, which is fundamental to process control, will be adequate to meet future requirements as needed for both development and volume manufacturing. Resist line edge roughness (LER) is becoming significant, as gate line width control becomes comparable to the size of a polymer unit. Next-generation lithography will

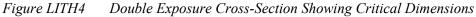
require careful attention to details as the exposure tools are based upon approaches that have never been used before in manufacturing. These tools must be developed and proven to be capable of meeting the reliability and utilization requirements of cost-effective manufacturing.

The introduction of immersion lithography has brought many new challenges. The immersion fluid must be free from bubbles that may be caused by the scanning process, by exposure, or by the fluid delivery, recovery, and recirculation system. The immersion fluid might also remain on the wafer after exposure and result in staining. Resists must be compatible with the fluid or topcoat. To enable the extension of immersion lithography at 193 nm wavelength beyond 45 nm half-pitch patterning, fluids with higher index than water (n > 1.44) and lens materials with higher index than CaF₂ or fused silica (>1.56) are required. These materials need to meet all requirements for imaging and compatibility with the immersion lithography environment.

The challenge of meeting the resolution and variability requirements with a single exposure is driving the serious consideration of the use of multiple exposures to define each device layer. Some double exposure techniques are already in use in the industry, including alternating phase shift plus trim and double dipole exposures. These techniques allow for imaging at closer to the diffraction limit (k_1 =0.25). New multiple exposure techniques being considered are designed to form images beyond the single-exposure diffraction limit and these drive additional requirements on lithography that vary by the specific type of multiple exposure technique employed. For clarity in the roadmap, *double exposure* (DE) refers to two lithographic exposures into one material with only one etch step, and *double patterning* (DP) refers to the use of two separate lithography/etch steps to define a single device layer. The final CD uniformity budget therefore adds an additional etch bias matching requirement for DP that is not present in DE. Another version of DP uses one lithography step and then additional thin film deposition and etch steps in a spacer-like process to define two sets of critical features. Spacer double patterning eliminates an exposure, but the allowable shapes are limited because the single exposure defines the location of the features. Requirements for this single exposure, multiple etch process will be included in the 2008 ITRS update.

Figure LITH2 Schematic Process Flows for Double Exposure, Double Patterning, and Spacer Double Patterning


In addition to the patterning differences, both DE and DP can be separated into cases where each of the critical device features are fabricated by a single mask image or the combination of two mask images. The first, where the two exposure steps define features independently, is more common. The critical dimension and overlay of the entire device level are composed of the combination of independent populations from each of the exposure steps. Therefore, each mask that composes the set to define a device level must have tighter CD and mask image placement control than a single mask used to define a device level. In the diagram (Figure LITH4) that represents a negative resist process, the line, w, is the critical feature and w_1 and w_2 represent the shapes defined by the first and second exposure. The overlay error between the


two exposures, x, does not affect the critical feature size. CD variations from each exposure are assumed to be independent, random variables so that the total CD variation is

In double patterning, uncorrelated exposures (left) define critical features with each exposure being independent, correlated exposures (right) define critical features by the juxtaposition of two exposures

Figure LITH3 Double Patterning: Uncorrelated Exposures versus Correlated Exposures— Critical Features

In independent exposures, each mask defines a portion of the population of critical features, and each portion is independent. In dependent exposures, each exposure defines edges of the critical features such that both exposures are needed to define the critical size of the feature.

The shapes w_1 and w_2 are defined by the two exposures with an overlay error of δx , resulting in spaces s_1 and s_2 . The device pitch is p.

The dependent exposure case where the two exposure steps are superimposed to define each device critical feature now must include the overlay in the CD uniformity budget. Because CD uniformity requirements are typically much tighter than device overlay, this requires extraordinary control of overlay and mask image placement. In the diagram, the space, s, is the critical feature. The total population of critical spaces is composed of s_1 which is increased in size due to the overlay error, x, and s_2 which is decreased in size due to the overlay error.

$$s_{1,2} = p - \frac{1}{2}(w_1 + w_2) \pm \delta x$$

 $\delta w_{Total}^2 =$

[5] Therefore the error in space size includes contributions from both exposures (w_1 and w_2) and the overlay error (δx), as well as any variations in etch bias (not shown above).

Extreme ultraviolet lithography is expected to provide a single exposure solution for use in manufacturing starting at 22 nm half pitch and possibly for 32 nm half pitch. EUV lithography is a projection optical technology that uses 13.5 nm wavelength at a $4\times$ demagnification, operating under an ultra-high vacuum environment. At this wavelength, all materials are highly absorbing, so the imaging system is composed of mirrors coated with multilayer structures designed to have

high reflectivity at 13.5 nm wavelength. The significant technical hurdles for implementing EUV lithography are outlined in Table 75. These include: developing mask blank fabrication processes with low defect density; developing reliable EUV sources with high output power and sufficient lifetime for surrounding collector optics; controlling contamination of all mirrors in the illuminator and projection optics; fabrication of optics with figure and finish compatible with high quality imaging at 13.5 nm wavelength; resist with sufficiently low line width roughness and low exposure dose, and protection of masks from defects without pellicles. EUV lithography will also be mixed with optical lithography, so appropriate strategies need to be developed for overlay.

In the longer term, even more demanding process requirements for overlay, defect, and CD control will continue to pose challenges for process control, resist development, and mask development. The possible use of maskless lithography will probably require die-to-database inspection of wafers to replace die-to-database inspection of masks. Imprint lithography templates have the same dimensions as the wafer pattern, making mask fabrication more challenging. Resist materials will also require significant improvements. To extend immersion lithography, higher index of refraction will be eventually required. Alternatives to perfluoroalkyl sulfonate (PFAS) compounds used in photoacid generators and antireflection coatings should be found. Acid diffusion in chemically amplified resist might limit the ultimate minimum half pitch achievable with high sensitivity resists unless diffusion length is reduced or new methods of sensitizing resists are found. Resist materials with inherently high dimensional control for uniform CD and low line width roughness patterning will also be needed.

<i>Table LITH2</i>	Lithography Difficult Challenges

Difficult Challenges $\geq 32 \text{ nm}^*$	Summary of Issues
	Registration, CD, and defect control for masks
	Equipment infrastructure (writers, inspection, metrology, cleaning, repair) for fabricating masks with sub-resolution assist features
Optical masks with features for resolution	Understanding polarization effects at the mask and effects of mask topography on imaging and optimizing mask structures to compensate for these effects
enhancement and post-optical mask fabrication	Eliminating formation of progressive defects and haze during exposure
	Determining optimal mask magnification ratio for <32 nm half pitch patterning with 193 nm radiation and developing methods, such as stitching, to compensate for the potential use of smaller exposure fields
	Development of defect free 1× templates
	Achieving constant/improved ratio of exposure related tool cost to throughput over time
	Cost-effective resolution enhanced optical masks and post-optical masks, and reducing data volume
	Sufficient lifetime for exposure tool technologies
Cost control and return on investment	Resources for developing multiple technologies at the same time
	ROI for small volume products
	Stages, overlay systems and resist coating equipment development for wafers with 450 mm diameter
	Processes to control gate CDs to < 1.3 nm 3σ
	New and improved alignment and overlay control methods independent of technology option to <5.7 nm 3σ overlay error
Process control	Controlling LER, CD changes induced by metrology, and defects < 10 nm in size
	Greater accuracy of resist simulation models
	Accuracy of OPC and OPC verification, especially in presence of polarization effects
	Control of and correction for flare in exposure tool, especially for EUV lithography
	Lithography friendly design and design for manufacturing (DFM)
	Control of defects caused in immersion environment, including bubbles and staining
	Resist chemistry compatibility with fluid or topcoat and development of topcoats
r : 124 1	Resists with index of refraction > 1.8
Immersion lithography	Fluid with refractive index > 1.65 meeting viscosity, absorption, and fluid recycling requirements
	Lens materials with refractive index >1.65 meeting absorption and birefringence requirements for lens designs
	Low defect mask blanks, including defect inspection with < 30 nm sensitivity and blank repair
	Source power > 180 W at intermediate focus, acceptable utility requirements through increased conversion efficiency and sufficient lifetime of collector optics and source components
EUV lithography	Resist with $< 3 \text{ nm } 3\sigma$ LWR, $< 10 \text{ mJ/cm2}$ sensitivity and $< 40 \text{ nm } \frac{1}{2}$ pitch resolution
20 v nalography	Fabrication of optics with < 0.10 nm rms figure error and < 10% intrinsic flare
	Controlling optics contamination to achieve > five-year lifetime
	Protection of masks from defects without pellicles
	Overlay of multiple exposures including mask image placement, mask-to-mask matching, and CD control for edges defined by two separate exposures
	Availability of software to split the pattern, apply OPC, and verify the quality of the split while preserving critical features and maintaining no more than two exposures for arbitrary designs
Double patterning	Availability of high productivity scanner, track, and process to maintain low cost-of-ownership
	Photoresists with independent exposure of multiple passes
	Fab logistics and process control to enable low cycle time impact that include on-time availability of additional reticles and efficient scheduling of multiple exposure passes
	nvention of the 2007 ITRS for challenges of >22nm will be reviewed in the 2008 Update

*Lithography challenges \geq 32nm versus the convention of the 2007 ITRS for challenges of \geq 22nm will be reviewed in the 2008 Update.

Difficult Challenges < 32 nm*	Summary of Issues					
	Defect-free masks, especially for 1× masks for imprint and EUVL mask blanks free of printable defects					
	Timeliness and capability of equipment infrastructure (writers, inspection, metrology, cleaning, repair), especially for 1× masks					
Mask fabrication	Mask process control methods and yield enhancement					
	Protection of EUV masks and imprint templates from defects without pellicles					
	Phase shifting masks for EUV					
	Resolution and precision for critical dimension measurement down to 6 nm, including line width roughness metrology for 0.8 nm 3σ					
Metrology and defect inspection	Metrology for achieving < 2.8 nm 3σ overlay error					
	Defect inspection on patterned wafers for defects < 30 nm, especially for maskless lithography					
	Die-to-database inspection of wafer patterns written with maskless lithography					
	Achieving constant/improved ratio of exposure-related tool cost to throughput					
Cost control and return on	Development of cost-effective optical and post-optical masks					
investment	Achieving ROI for industry with sufficient lifetimes for exposure tool technologies and ROI for small volume products					
	Development of processes to control gate CD < 0.9 nm 3σ with < 1.2 nm 3σ line width roughness					
Gate CD control improvements and process control	Development of new and improved alignment and overlay control methods independent of technology option to achieve < 2.8 nm 3σ overlay error, especially for imprint lithography					
	Process control and design for low k1 optical lithography					
	Resist and antireflection coating materials composed of alternatives to PFAS compounds					
Resist materials	Limits of chemically amplified resist sensitivity for < 32 nm half pitch due to acid diffusion length					
	Materials with improved dimensional and LWR control					

 Table LITH2
 Lithography Difficult Challenges (continued)

*Lithography challenges <32nm versus the convention of the 2007 ITRS for challenges of <22nm will be reviewed in the 2008 Update.

LITHOGRAPHY TECHNOLOGY REQUIREMENTS

The lithography roadmap needs are defined in the following tables:

- Lithography Requirements (Tables LITH3a and b)
- Resist Requirements (Tables LITH4a, b, and c)
- Mask Requirements (Tables LITH5a–f)

Requirements for small MPU gate length after etch create significant challenges for metrology and process control. Controlling critical dimensions to a required $\pm 12\%$ tolerances of the final etched gate CD is becoming increasingly difficult. This 12% includes cross-field, cross-wafer, wafer-to-wafer, and lot-to-lot variations across all critical features in all orientations on the device. Post development line width reduction techniques are becoming more prevalent and more capable. Printing larger features in resist improves CD control by providing for a larger process window for the lithography process. Integrated circuit manufacturers are also modifying design rules to make the patterning task more feasible. Metrology will play a critical role in defining these lithography friendly design rules. The effects of line edge and line width roughness (LWR) are also becoming increasingly apparent in device performance; therefore, metrology tools need to be modified to accurately measure these variations as well. High frequency line width roughness affects dopant concentration profiles and affects interconnect wire resistance. Line width roughness at larger spatial frequency results in variations of transistor gate length over the active region of the device. This variation increases leakage of transistors and causes a variation of the speed of individual transistors, which in turn leads to IC timing issues. The line width and line edge roughness also provide a contribution to the CD uniformity error budget for small gate lengths and long LER/LWR correlation lengths. The CD uniformity component from LER/LWR is likely to drive the required LER/LWR numbers even more aggressively than in prior roadmaps (this will be addressed in the 2008 ITRS Update). Because of the particular challenges associated with imaging contact holes, the size of contact holes after etch will be

smaller than the lithographically imaged hole, similar to the difference between imaged and final MPU gate length. Refer to Table LITH3a and b for the technology requirements for lithography.

Photoresists need to be developed that provide good pattern fidelity, good line width control, low line width roughness, and few defects. As feature sizes get smaller, defects and monomers will have comparable dimensions with implications for the filtering of resists. Refer to Tables LITH4a–c.

The requirements for masks are for critical layers. Early volumes are assumed to be relatively small and difficult to produce. The masks for all next-generation lithographies (NGL) are different from optical masks, and no NGL technology can support a pellicle. Because the requirements for NGL masks are substantially different than those for optical lithography, separate tables have been included for optical masks, EUV masks, and imprint templates (Tables LITH5a and b, LITH5c and d, LITH5e and f, respectively). The latter tables covering EUV and imprint requirements note the requirements that are common with optical masks and those which are specific to each technology. Imprint may take several forms, and requirements specific to ultraviolet nanoimprint lithography (UV-NIL), in which UV radiation is used to cure the liquid filling the template, are listed. EUV masks must also have tight flatness control, and there are additional requirements for various parameters associated with reflectivity of EUV masks. EUV mask blanks must be free of small defects, requiring development of new inspection tools and low defect fabrication processes. Imprint templates have surface relief features that are the same size as the wafer features, but the area that needs to be controlled for CD, pattern placement, and defects is 16 times smaller than for comparable 4× masks for other technologies. Inspection for defects on these masks will be difficult, though. Solutions for protecting the masks from defects added during storage, handling, and use in the exposure tool need to be developed and tested because there are no known pellicle options for EUV masks or imprint templates. These different NGL mask requirements can be expected to exacerbate, rather than relieve, the high costs associated with masks that are already being encountered with optical masks.

CD control and overlay tolerances are the most difficult requirements to achieve. Overlay tolerances have become more demanding to fabricate memory circuits with higher yield. To reduce the effect of lens distortion on overlay error, a single exposure tool may be used to print multiple critical layers for the same wafers. Both feed-back and feed-forward approaches need to be supported by process tools (scanners and tracks). The automation framework and CIM system needs to comply with a large set of correcting models and algorithms, which might be highly non-linear. The requirements for automated process control (APC) are discussed in more detail in the *Crosscut* section with Factory Integration of this chapter.

Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ pitch (nm) (contacted)	65	57	50	45	40	36	32	28	25
DRAM and Flash									
DRAM ¹ / ₂ pitch (nm)	65	57	50	45	40	36	32	28	25
Flash ¹ / ₂ pitch (nm) (un-contacted poly)	54	45	40	36	32	28	25	23	20
Contact in resist (nm)	72	62	55	50	44	39	35	31	28
Contact after etch (nm)	65	57	50	45	40	36	32	28	25
Overlay [A] (3 sigma) (nm)	13	11.3	10.0	9.0	8.0	7.1	6.4	5.7	5.1
CD control (3 sigma) (nm) [B]	5.6	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.1
MPU									
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)	68	59	52	45	40	36	32	28	25
MPU gate in resist (nm)	42	38	34	30	27	24	21	19	17
MPU physical gate length (nm) *	25	23	20	18	16	14	13	11	10
Contact in resist (nm)	84	73	64	56	50	44	39	35	31
Contact after etch (nm)	77	67	58	51	45	40	36	32	28
Gate CD control (3 sigma) (nm) [B] **	2.6	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Chip size (mm ²)									
Maximum exposure field height (mm)	26	26	26	26	26	26	26	26	26
Maximum exposure field length (mm)	33	33	33	33	33	33	33	33	33
Maximum field area printed by exposure tool (mm^2)	858	858	858	858	858	858	858	858	858
Wafer site flatness at exposure step (nm) [C]	63	54	50	45	40	32	29	22	17
Number of mask levels MPU	33	35	35	35	35	35	35	37	37
Number of mask levels DRAM	24	24	24	26	26	26	26	26	26
Wafer size (diameter, mm)	300	300	300	300	300	450	450	450	450
NA required for Flash (single exposure)	1.01	1.20	1.35	1.52	1.70	1.91			
NA required for logic (single exposure)	0.91	1.04	1.20	1.38	1.54	1.73	1.94		
NA required for double exposure (Flash)	0.72	0.86	0.96	1.08	1.22	1.36	1.53	1.72	1.93
NA required for double exposure (logic)	0.62	0.72	0.82	0.95	1.06	1.19	1.34	1.50	1.68

 Table LITH3a
 Lithography Technology Requirements—Near-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	22	20	18	16	14	13	11
DRAM and Flash							
DRAM ¹ / ₂ pitch (nm)	23	20	18	16	14	13	11
Flash ¹ / ₂ pitch (nm) (un-contacted poly)	18	16	14	13	11	10	9
Contact in resist (nm)	25	22	20	18	16	14	12
Contact after etch (nm)	23	20	18	16	14	13	11
Overlay [A] (3 sigma) (nm)	4.5	4.0	3.6	3.2	2.8	2.5	2.3
CD control (3 sigma) (nm) [B]	1.9	1.7	1.5	1.3	1.2	1.0	0.9
MPU							
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)	23	20	18	16	14	13	11
MPU gate in resist (nm)	15	13	12	11	9	8	8
MPU physical gate length (nm) *	9	8	7	6	6	5	4
Contact in resist (nm)	28	25	22	20	18	16	14
Contact after etch (nm)	25	23	20	18	16	14	13
Gate CD control (3 sigma) (nm) [B] **	0.9	0.8	0.7	0.7	0.6	0.5	0.5
Chip size (mm ²)							
Maximum exposure field height (mm)	26	26	26	26	26	26	26
Maximum exposure field length (mm)	33	33	33	33	33	33	33
Maximum field area printed by exposure tool (mm ²)	858	858	858	858	858	858	858
Wafer site flatness at exposure step (nm) [C]							
Number of mask levels MPU	39	39	39	39	39	39	39
Number of mask levels DRAM	26	26	26	26	26	26	26
Wafer size (diameter, mm)	450	450	450	450	450	450	450
NA required for Flash (single exposure)							
NA required for logic (single exposure)							
NA required for double exposure (Flash)							
NA required for double exposure (logic)							

 Table LITH3b
 Lithography Technology Requirements—Long-term Years

Manufacturable solutions exist, and are being optimized

Manufacturable solutions are known Interim solutions are known

Manufacturable solutions are NOT known

Notes for Table LITH3a and b:

[A] Overlay (nm)—Overlay is a vector component (in X and Y directions) quantity defined at every point on the wafer. It is the difference, O, between the vector position, P1, of a substrate geometry, and the vector position of the corresponding point, P2, in an overlaying pattern, which may consist of resist. O=P1-P2. The difference, O, is expressed in terms of vector components in the X and Y directions, and the value shown is three times the standard deviation of overlay values on the wafer.

[B] CD control (nm)—Control of critical dimensions compared to mean linewidth target at all pattern pitch values, including errors from all lithographic sources (due to masks, imperfect optical proximity correction, exposure tools, and resist) at all spatial length scales (e.g., includes errors across exposure field, across wafer, between wafers and between wafer lots)

[C] Wafer site flatness (nm)—Residual wafer topography (peak to valley) across the 26×10 mm scanner exposure area as the wafer arrives at the scanner/track cluster and after linear tilt correction by the scanner in both the cross-slit and cross-scan-length directions.

Tuble Littitu	1105151 1	cequiner	nems	iveur-iei	ini icui	5			
Year of Production	2007	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ pitch (nm) (contacted)	65	57	50	45	40	36	32	28	25
Flash ½ pitch (nm) (un-contacted poly)	53.5	45.0	40.1	35.7	31.8	28.3	25.3	22.5	20.0
MPU/ASIC Metal 1 (M1) ¹ / ₂ Pitch (nm)(contacted)	68	59	52	45	40	36	32	28	25
MPU physical gate length (nm) [after etch]	25	23	20	18	16	14	13	11	10
MPU gate in resist length (nm)	42	38	34	30	27	24	21	19	17
Resist Characteristics *									
Resist meets requirements for gate resolution and gate CD control (nm, 3 sigma) **†	2.6	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Resist thickness (nm, single layer) ***	105- 190	90- 160	80- 145	70- 130	60- 115	55- 100	50- 90	45- 80	40- 75
PEB temperature sensitivity (nm/C)	1.75	1.5	1.5	1.5	1.5	1.5	1	1	1
Backside particle density (particles/cm ²)	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Back surface particle diameter: lithography and measurement tools (nm)	120	120	100	100	100	100	75	75	75
Defects in spin-coated resist films (#/cm ²) †	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in spin-coated resist films (nm)	40	35	30	30	20	20	20	20	10
Defects in patterned resist films, gates, contacts, etc. $(\#/cm^2)$	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.01
Minimum defect size in patterned resist (nm)	40	35	30	30	20	20	20	20	10
Low frequency line width roughness: (nm, 3 sigma) <8% of CD *****	3.4	3.0	2.7	2.4	2.1	1.9	1.7	1.5	1.3
Defects in spin-coated resist films for double patterning $(\#/cm^2)$	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Backside particle density for double patterning (#/cm ²)	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14

 Table LITH4a
 Resist Requirements—Near-term Years

Manufacturable solutions exist, and are being optimized

Manufacturable solutions are known Interim solutions are known

Manufacturable solutions are NOT known

Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	23	20	18	16	14	13	11
Flash ½ pitch (nm) (un-contacted poly)	17.9	15.9	14.2	12.6	11.3	10.0	8.9
MPU/ASIC Metal 1 (M1) ¹ / ₂ Pitch (nm)(contacted)	23	20	18	16	14	13	11
MPU physical gate length (nm) [after etch]	9	8	7	6	6	0	0
MPU gate in resist length (nm)	15	13	12	11	9	8	8
Resist Characteristics *							
Resist meets requirements for gate resolution and gate CD control (nm, 3 sigma) **†	0.9	0.8	0.7	0.7	0.6	0.5	0.5
Resist thickness (nm, single layer) ***	35-65	30-60	25-50	25-45	20-40	20-40	15-35
PEB temperature sensitivity (nm/C)	1	1	1	11	11		
Backside particle density (particles/cm ²)	0.28	0.28	0.28	0.28	0.28	0.28	0.28
Back surface particle diameter: lithography and measurement tools (nm)	50	50	50	50	50	50	50
Defects in spin-coated resist films (#/cm ²) †	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in spin-coated resist films (nm)	10	10	10	10	10	10	10
Defects in patterned resist films, gates, contacts, etc. $(\#/cm^2)$	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in patterned resist (nm)	10	10	10	10	10	10	10
Low frequency line width roughness: (nm, 3 sigma) <8% of CD *****	1.2	1.1	1.0	0.8	0.8	0.7	0.6
Defects in spin-coated resist films for double patterning (#/cm ²)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Backside particle density for double patterning (#/cm ²)	0.14	0.14	0.14	0.14	0.14	0.14	0.14

Table LITH4bResist Requirements—Long-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known

Interim solutions are known Manufacturable solutions are NOT known

Notes for Table LITH4a and b:

Exposure Dependent Requirements

* Resist sensitivity is treated separately in the second resist sensitivity table.

** Indicates whether the resist has sufficient resolution, CD control, and profile to meet the resolution and gate CD control values.

*** Resist thickness is determined by the aspect ratio range of 2.0:1 to 3.5:1, limited by pattern collapse.

**** Linked with resolution.

***** LWR_{Lf} is $3 \sigma \sigma$ deviation of spatial frequencies from 0.5 μm^{-1} to 1/(2*MPU ½ Pitch).

Note: Standard deviation is determined by biased estimate (corrected for SEM noise) of linewidth variation over a greater than or equal 2 µm measured at less than or equal 4 nm intervals.

† Defects in coated films are those detectable as physical objects, such as pinholes, that may be distinguished from the resist film by optical detection methods.

Other requirements:

[A] Need for a positive tone resist and a negative tone resist will depend upon critical feature type and density.

[B] Feature wall profile should be 90 ± 2 degrees.

{*C*] *Thermal stability should be* \geq 130 °C.

[D] Etching selectivity should be > that of poly hydroxystyrene (PHOST).

[E] Upon removal by stripping there should be no detectible residues.

[F] Sensitive to basic airborne compounds such as amines and amides. Clean handling space should have < 1000 pptM of these materials.

[G] Metal contaminants < 5 ppb.

[H] Organic material outgassing (molecules/cm²-sec) for two minutes (under the lens). Value for 193 nm lithography tool is < 1e12. Value for EUV lithography tool is < 5e13. Values for electron beam are being determined.

[1] Si containing material outgassing (molecules/cm²-sec) for two minutes (under the lens). Value for 193 nm lithography tool is < 1e8. Value for EUV lithography tool is < 5e13. Values for electron beam are being determined.

Exposure Technology	Sensitivity
248 nm	10–50 mJ/ cm ²
193 nm	20–50 mJ/ cm ²
Extreme Ultraviolet at 13.5 nm	5–30 mJ/ cm ²
High Voltage Electron Beam (50–100 kV) ****	5–30 μC/ cm ²
Low Voltage Electron Beam (1–2 kV) ****	0.2–30 μC/ cm ²

Table LITH4c Resist Sensitivities

**** Linked with resolution

Iable LIIH5a Op Year of Production Op	2007	2008 2008	2009	2010	2011	1	2013	2014	2015
DRAM ½ pitch (nm) (contacted)	65	57	50	45	40	2012 36	32	2014	2015
DRAM/Flash CD control (3 sigma) (nm)	5.6	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.1
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	68	59	52	45	40	36	32	28	25
MPU gate in resist (nm)	42	38	34	30	27	24	21	19	17
MPU physical gate length (nm)	25	23	20	18	16	14	13	11	10
Gate CD control (3 sigma) (nm) [A]	2.6	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Overlay (3 sigma) (nm)	13	11	10	9.0	8.0	7.1	6.4	5.7	5.1
Contact in resist (nm)	84	73	64	56	50	44	39	35	31
Mask magnification [B]	4	4	4	4	4	4	4	4	4
Mask nominal image size (nm) [C]	170	151	135	120	107	95	85	76	67
Mask minimum primary feature size [D]	119	106	94	84	75	67	59	53	47
Mask sub-resolution feature size (nm) opaque [E]	85	76	67	60	54	48	42	38	34
Image placement (nm, multipoint) [F]	7.8	6.8	6.0	5.4	4.8	4.3	3.8	3.4	3.0
CD uniformity allocation to mask (assumption)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
MEEF isolated lines, binary or attenuated phase shift mask [G]	1.6	1.8	2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) isolated lines (MPU gates), binary or attenuated phase shift mask [H] *	2.6	2.1	1.7	1.3	1.2	1.1	1.0	0.9	0.8
MEEF dense lines, binary or attenuated phase shift mask [G]	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) dense lines (DRAM half pitch), binary or attenuated phase shift mask [J]	4.0	3.4	3.0	2.7	2.4	2.1	1.9	1.7	1.5
MEEF contacts [G]	3.5	4	4	4	4	4	4	4	4
CD uniformity (nm, 3 sigma), contact/vias [K] *	2.5	1.9	1.7	1.5	1.3	1.2	1.0	0.9	0.8
Linearity (nm) [L]	10.4	9.1	8.0	7.2	6.4	5.7	5.1	4.5	4.0
CD mean to target (nm) [M]	5.2	4.5	4.0	3.6	3.2	2.9	2.5	2.3	2.0
Defect size (nm) [N] *	52	45	40	36	32	29	25	23	20
Blank flatness (nm, peak-valley) [O]	250	218	192	173	154	137	122	109	97
Pellicle thickness uniformity [P]	5.0	4.6	4.2	3.8	3.5	3.3	3.0	2.8	2.6
Data volume (GB) [Q]	413	520	655	825	1040	1310	1651	2080	2621
Mask design grid (nm) [R]	2	2	2	1	1	1	1	1	1
Attenuated PSM transmission mean deviation from target (\pm % of target) [S]	4	4	4	4	4	4	4	4	4
Attenuated PSM transmission uniformity (\pm % of target) [T]	4	4	4	4	4	4	4	4	4
Attenuated PSM phase mean deviation from $180^{\circ} (\pm \text{ degree}) [U]$	3	3	3	3	3	3	3	3	3
Alternating PSM phase mean deviation from nominal phase angle target (\pm degree) [T]	1.5	1	1	1	1	1	1	1	1
Alternating PSM phase uniformity (\pm degree) [U]	1	1	1	1	1	1	1	1	1
Image placement (nm, multipoint) for double patterning of independent layers [V]	5.5	4.8	4.2	3.8	3.4	3.0	2.7	2.4	2.1
Difference in CD Mean-to-target for two masks used as a double patterning set (nm) [W]	2.6	2.3	2.0	1.8	1.6	1.4	1.3	1.1	1.0
Double exposure: image placement for each mask used for exposing mutually dependent layers (nm) [X]	1.9	1.6	1.4	1.2	1.1	1.0	0.9	0.8	0.7
Double exposure: mask CD uniformity for each mask used for exposing mutually dependent layers (nm) [Y]	1.9	1.6	1.4	1.2	1.1	1.0	0.9	0.8	0.7
Double exposure: dual space, etch bias repeatability and uniformity [Z]	1.2	1.0	0.9	0.8	0.7	0.7	0.6	0.5	0.5
				Absorber/a	ttenuator on	fused silica			
Mask materials and substrates	Pellicle for optical masks for exposure wavelengths down to 193 nm, including masks for 193 nm immersion.								

Table LITH5aOptical Mask Requirements—Near-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known

Interim solutions are known Manufacturable solutions are NOT known

Optical masks are not part of potential solutions. beyo	ond 22 nm						
Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	22	20	18	16	14	13	11
DRAM/Flash CD control (3 sigma) (nm)	1.9	1.7	1.5	1.3	1.2	1.0	0.9
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	23	20	18	16	14	13	11
MPU gate in resist (nm)	15	13	12	11	9	8	8
MPU physical gate length (nm)	9	8	7	6	6	5	4
Gate CD control (3 sigma) (nm) [A]	0.9	0.8	0.7	0.7	0.6	0.5	0.5
Overlay (3 sigma) (nm)	4.5	4.0	3.6	3.2	2.8	2.5	2.3
Contact in resist (nm)	28	25	22	20	18	16	14
Mask magnification [B]	4	4	4	4	4	4	4
Mask nominal image size (nm) [C]	60	54	48	42	38	34	30
Mask minimum primary feature size [D]	42	37	33	30	26	24	21
Mask sub-resolution feature size (nm) opaque [E]	30	27	24	21	19	17	15
Image placement (nm, multipoint) [F]	2.7	2.4	2.1	1.9	1.7	1.5	1.4
CD uniformity allocation to mask (assumption)	0.4	0.4	0.4	0.4	0.4	0.4	0.4
MEEF isolated lines, binary or attenuated phase shift	2.2	2.2	2.2	2.2	2.2	2.2	2.2
mask [G]	2.2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) isolated lines (MPU gates), binary or attenuated phase shift mask [H] *	0.7	0.6	0.5	0.5	0.4	0.4	0.3
<i>MEEF dense lines, binary or attenuated phase shift</i>							
mask [G]	2.2	2.2	2.2	2.2	2.2	2.2	2.2
CD uniformity (nm, 3 sigma) dense lines (DRAM half	1.3	1.2	1.1	1.0	0.9	0.8	0.7
pitch), binary or attenuated phase shift mask [J]	1.5	1.4	1.1	1.0	0.9	0.0	0.7
MEEF contacts [G]	4	4	4	4	4	4	4
CD uniformity (nm, 3 sigma), contact/vias [K] *	0.7	0.7	0.6	0.5	0.5	0.4	0.4
Linearity (nm) [L]	3.6	3.2	2.9	2.5	2.3	2.0	1.8
CD mean to target (nm) [M]	1.8	1.6	1.4	1.3	1.1	1.0	0.9
Defect size (nm) [N] *	18	16	14	13	11	10	9
Blank flatness (nm, peak-valley) [O]	86	77	69	61	54	48	43
Pellicle thickness uniformity [P]	2.4	2.2	2.0	1.9	1.7	1.6	1.5
	3302	4161	5242	6605		10484	13209
Data volume (GB) [Q]					8321		
Mask design grid (nm) [R]	1	1	1	0.5	0.5	0.5	0.5
Attenuated PSM transmission mean deviation from target (\pm % of target) [S]	4	4	4	4	4	4	4
Attenuated PSM transmission uniformity (\pm % of	4	4	4	4	4	4	4
target) [T]	-						
Attenuated PSM phase mean deviation from 180° (± degree) [U]	3	3	3	3	3	3	3
Alternating PSM phase mean deviation from nominal	1	1	1	1	1	1	1
phase angle target (\pm degree) [T]	•	•		•	•		•
Alternating PSM phase uniformity (\pm degree) [U]	1	1	1	1	1	1	1
Image placement (nm, multipoint) for double	1.9	1.7	1.5	1.4	1.2	1.1	1.0
patterning of independent layers [V]							
Difference in CD Mean-to-target for two masks used as a double patterning set (nm) [W]	0.9	0.8	0.7	0.6	0.6	0.5	0.5
Double exposure: image placement for each mask used							
for exposing mutually dependent layers (nm) [X]	0.6	0.6	0.5	0.4	0.4	0.3	0.3
			0.5				
Double exposure: mask CD uniformity for each mask		0.6	0.5	0.4	0.4	0.3	0.3
Double exposure: mask CD uniformity for each mask used for exposing mutually dependent layers (nm) [Y]	0.6	0.0					
				0.2	0.2	0.2	0.2
used for exposing mutually dependent layers (nm) [Y]	0.6 0.4	0.4	0.3	0.3	0.3	0.2	0.2
used for exposing mutually dependent layers (nm) [Y] Double exposure: dual space, etch bias repeatability	0.4	0.4	0.3	ttenuator on	fused silica		

Table LITH5bOptical Mask Requirements—Long-term Years

Optical masks are not part of potential solutions. beyond 22 nr

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

Notes for Table LITH5a and b:

[A] Wafer Minimum Line Size—Minimum wafer line size imaged in resists. Line size as drawn or printed to zero bias (Most commonly applied to isolated lines. Drives CD uniformity and linearity.)

[B] Magnification—Lithography tool reduction ratio.

[C] Mask Nominal Image Size—Equivalent to wafer minimum feature size in resist multiplied by the mask reduction ratio.

[D] Mask Minimum Primary Feature Size—Minimum printable feature after OPC application to be controlled on the mask for CD placement and defects.

[E] Mask Sub-Resolution Feature Size—The minimum width of non-printing features on the mask such as sub-resolution assist features.

[F] Image Placement—The maximum component deviation (X or Y) of the array of the images centerline relative to a defined reference grid after removal of isotropic magnification error. These values do not comprehend additional image placement error induced by pellicle mount and mask clamping in the exposure tool.

[G] The CD error on the wafer is directly proportional to the CD error on the mask where mask error enhancement factor (MEEF) is the constant of proportionality. An MEEF value greater than unity therefore imposes a more stringent CD uniformity requirement on the mask to maintain the CD uniformity budget on the wafer.

[H] CD Uniformity—The three-sigma deviation of actual image sizes on a mask for a single size and tone critical feature. Applies to features in X and Y and isolated features on a binary mask.

[I] CD Uniformity—The three-sigma deviation of actual image sizes on a mask for a single size and tone critical feature. Applies to features in X and Y and multiple pitch features on a quartz shifter phase mask.

[J] CD Uniformity—The three-sigma deviation of actual image sizes on a mask for a single size and tone critical feature. Applies to features in X and Y and multiple pitch features on a binary or attenuated phase shift mask.

[K] CD Uniformity—The three-sigma deviation of square root of contact area on a mask through multiple pitches.

[L] Linearity—Maximum deviation between mask "Mean to Target" for a range of features of the same tone and different design sizes. This includes features that are equal to the smallest sub-resolution assist mask feature and up to three times the minimum wafer half pitch multiplied by the magnification.

[M] CD Mean to Target—The maximum difference between the average of the measured feature sizes and the agreed to feature size (design size). Applies to a single feature size and tone. Σ (Actual-Target)/Number of measurements.

[N] Defect Size—A mask defect is any unintended mask anomaly that prints or changes a printed image size by 10% or more. The mask defect size listed in the roadmap are the square root of the area of the smallest opaque or clear "defect" that is expected to print for the stated generation. Printable 180-degree phase defects are 70% smaller than the number shown.

[0] Blank Flatness—Flatness is nanometers, peak-to-valley across the central area image field on a 6-inch \times 6-inch square mask blank with 5 mm edge exclusion. Flatness is derived from wafer lithography DOF requirements for each printing the desired feature dimensions.

[P] Pellicle thickness uniformity—The three-sigma standard deviation measured in nm of pellicle thickness variation across the imaging field. Note that although pellicle mean thickness may decrease for future half-pitch generations, the thickness uniformity requirement remains an absolute value measured in nm.

[Q] Data Volume—This is the expected maximum file size for uncompressed data for a single layer as presented to a pattern generator tool.

[R] Mask Design Grid—Wafer design grid multiplied by the mask magnification.

[S] Transmission—Ratio, expressed in percent, of the fraction of light passing through an attenuated PSM layer relative to the mask blank with no opaque films.

[T] Phase—Change in optical path length between two regions on the mask expressed in degrees. The mean value is determined by averaging phase measured for many features on the mask.

[U] Alt PSM phase uniformity is a range specification equal to the maximum phase error deviation of any point from the mean value.

[V] Image placement for double patterning of independent layers is the measured image placement specification (see [F]) for each mask in an independent double exposure or double patterning process.

[W] Difference in CD mean-to-target for two masks refers to the difference in mean mask CDs of each of the individual masks that comprises the matched set of masks used to form a single circuit level in double patterning.

[X] Image placement for double patterning of dependent layers (see [F]) for each mask where the critical features are defined by the intersection of patterns from each mask is the image placement specification for each mask used in the dependent double patterning process.

[Y] CD uniformity for each mask use in a dependent double patterning process is the measured CD uniformity (see [J]) for each mask.

[Z] Etch bias repeatability and uniformity is the total CD uniformity error introduced by both etch steps used in a double patterning process or the single etch step used in a double exposure process.

							2014	
Year of Production	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ pitch (nm) (contacted)	57	50	45	40	36	32	28	25
Flash $\frac{1}{2}$ pitch (nm) (un-contacted poly)	45	40	36	32	28	25	23	20
DRAM/Flash CD control (3 sigma) (nm)	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.1
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	59	52	45	40	36	32	28	25
MPU gate in resist (nm)	38	34	30	27	24	21	19	17
MPU physical gate length (nm)	23	20	18	16	14	13	11	10
Gate CD control (3 sigma) (nm) [A]	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Overlay	11.3 67	10.0	9.0 51	8.0	7.1	6.4 36	5.7 32	5.1 28
Contact after etch (nm)	0/	58	51	45	40	30	32	28
Generic Mask Requirements								
Mask magnification [B]	4	4	4	4	4	4	4	4
Mask nominal image size (nm) [C]	151	135	120	107	95	85	76	67
Mask minimum primary feature size [D]	106	94	84	75	67	59	53	47
Image placement (nm, multipoint) [E]	6.8	6.0	5.4	4.8	4.3	3.8	3.4	3.0
CD uniformity (nm, 3 sigma) [F]								
Isolated lines (MPU gates)	3.4	3.0	2.7	2.4	2.1	1.9	1.7	1.5
Dense lines DRAM (half pitch)	6.5	5.8	5.2	4.6	4.1	3.7	3.3	2.9
Contact/vias	6.2	5.6	4.0	3.5	3.1	2.8	2.5	2.2
Linearity (nm) [G]	8.6	7.6	6.8	6.1	5.4	4.8	4.3	3.8
CD mean to target (nm) [H]	4.5	4.0	3.6	3.2	2.9	2.5	2.3	2.0
Defect size (nm) [I]	45	40	36	32	29	25	23	20
Data volume (GB) [J]	413	520	655	825	1040	1310	1651	2080
Mask design grid (nm) [K]	2	2	2	2	2	2	2	2
EUVL-specific Mask Requirements								
Substrate defect size (nm) [L]	38	36	35	33	31	30	28	27
Mean peak reflectivity	65%	66%	66%	66%	67%	67%	67%	67%
Peak reflectivity uniformity (% 3 sigma absolute)	0.69%	0.58%	0.47%	0.42%	0.37%	0.33%	0.29%	0.26%
Reflected centroid wavelength uniformity (nm 3 sigma) [M]	0.08	0.07	0.06	0.05	0.05	0.05	0.04	0.04
Absorber sidewall angle tolerance $(\pm degrees)$ [P]	1	1	0.75	0.69	0.62	0.5	0.5	0.5
Absorber LER (3 sigma nm) [N]	3.2	2.8	2.5	2.2	2.0	1.8	1.6	1.4
Mask substrate flatness (nm peak-to-valley) [O]	65	57	51	46	41	36	32	29

 Table LITH5c
 EUVL Mask Requirements—Near-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

	1	<u> </u>	1	5	1	1	
Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	23	20	18	16	14	13	11
Flash ¹ / ₂ pitch (nm) (un-contacted poly)	18	16	14	13	11	10	9
DRAM/Flash CD control (3 sigma) (nm)	1.9	1.7	1.5	1.3	1.2	1.0	0.9
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	23	20	18	16	14	13	11
MPU gate in resist (nm)	15	13	12	11	9	8	8
MPU physical gate length (nm)	9	8	7	6	6	5	4
Gate CD control (3 sigma) (nm) [A]	0.9	0.8	0.7	0.7	0.6	0.5	0.5
Overlay Construction of the construction of th	4.5	4.0	3.6	3.2	2.8	2.5	2.3
Contact after etch (nm)	25	23	20	18	16	14	13
Generic Mask Requirements							
Mask magnification [B]	4	4	4	4	4	4	4
Mask nominal image size (nm) [C]	60	54	48	42	38	34	30
Mask minimum primary feature size [D]	42	37	33	30	26	24	21
Image placement (nm, multipoint) [E]	2.7	2.4	2.1	1.9	1.7	1.5	1.4
CD uniformity (nm, 3 sigma) [F]							
Isolated lines (MPU gates)	1.3	1.2	1.1	1.0	0.9	0.8	0.7
Dense lines DRAM (half pitch)	2.6	2.3	2.0	1.8	1.6	1.4	1.3
Contact/vias	2.0	1.3	1.2	1.0	0.9	0.8	0.7
Linearity (nm) [G]	3.4	3.0	2.7	2.4	2.2	1.9	1.7
CD mean to target (nm) [H]	1.8	1.6	1.4	1.3	1.1	1.0	0.9
Defect size (nm) [I]	18	16	14	13	11	10	9
Data volume (GB) [J]	2621	3302	4160	5241	6604	8321	10483
Mask design grid (nm) [K]	2	1	1	1	1	1	1
EUVL-specific Mask Requirements							
Substrate defect size (nm) [L]	25	23	22	20	18	17	15
Mean peak reflectivity	67%	67%	67%	67%	67%	67%	67%
Peak reflectivity uniformity (% 3 sigma absolute)	0.23%	0.21%	0.19%	0.17%	0.15%	0.13%	0.12%
Reflected centroid wavelength uniformity (nm 3 sigma) [M]	0.04	0.03	0.03	0.03	0.02	0.02	0.02
Absorber sidewall angle tolerance $(\pm degrees)$ [P]	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Absorber LER (3 sigma nm) [N]	1.3	1.1	1.0	0.9	0.8	0.7	0.6
Mask substrate flatness (nm peak-to-valley) [O]	26	23	20	18	16	14	13

 Table LITH5d
 EUVL Mask Requirements—Long-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

Notes for Table LITH5c and d:

EUVL masks are patterned absorber layers on top of multilayers that are deposited on low thermal expansion material substrates.

[A] Wafer Minimum Feature Size—Minimum wafer line size imaged in resists. Line size as drawn or printed to zero bias (Most commonly applied to isolated lines. Drives CD uniformity and linearity.)

[B] Magnification—Lithography tool reduction ratio.

[C] Mask Nominal Image Size—Equivalent to wafer minimum feature size in resist multiplied by the mask reduction ratio.

[D] Mask Minimum Primary Feature Size—Minimum printable feature after OPC application to be controlled on the mask for CD, placement, and defects.

[E] Image Placement—The maximum component deviation (X or Y) of the array of the images centerline relative to a defined reference grid after removal of isotropic magnification error.

[F] CD Uniformity—The three sigma deviation of actual image sizes on a mask for a single size and tone critical feature. Applies to features in X and Y and multiple pitches from isolated to dense. Contacts: Measure and tolerance refer to the area of the mask feature. For table simplicity the roadmap numbers normalize back to one dimension. sqrt (Area)—sqrt (Target Area).

[G] Linearity—Maximum deviation between mask "Mean to Target" for a range of features of the same tone and different design sizes. This includes features that are greater than the mask minimum primary feature size and up to three times the minimum wafer half pitch multiplied by the magnification.

[H] CD Mean to Target—The maximum difference between the average of the measured feature sizes and the agreed-to feature size (design size). Applies to a single feature size and tone. Σ (Actual-Target)/Number of measurements.

[I] Defect Size—A mask defect is any unintended mask anomaly that prints or changes a printed image size by 10% or more. The mask defect size listed in the roadmap are the square root of the area of the smallest opaque or clear "defect" that is expected to print for the stated generation.

[J] Data Volume—This is the expected maximum file size for uncompressed data for a single layer as presented to a pattern generator tool.

[K] Mask Design Grid—Wafer design grid multiplied by the mask magnification.

[L] Substrate Defect Size—the minimum diameter spherical defect (in polystyrene latex sphere equivalent dimensions) on the substrate beneath the multilayers that causes an unacceptable linewidth change in the printed image. Substrate defects might cause phase errors in the printed image and are the smallest mask blank defects that would unacceptably change the printed image.

[M] Includes variation in median wavelength over the mask area and mismatching of the average wavelength to the wavelength of the exposure tool optics.

[N] Line edge roughness (LER)—is defined a roughness 3 sigma one-sided for spatial period <mask primary feature size.

[0] Mask Substrate Flatness—Residual flatness error (nm peak-to-valley) over the mask excluding a 5 mm edge region on all sides after removing wedge, which may be compensated by the mask mounting and leveling method in the exposure tool. The flatness error is defined as the deviation of the surface from the plane that minimizes the maximum deviation. This flatness requirement applies to each of the front and backsides individually.

[P] The sidewall angle tolerance applies to the mean absorber sidewall angle agreed upon between mask user and supplier.

Year of Production	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ pitch (nm) (contacted)	57	50	45	40	36	32	2014	2015
Flash ¹ / ₂ pitch (nm) (contacted)	45	40	36	32	28	25	23	20
DRAM/Flash CD control (3 sigma) (nm)	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.0
MPU/ASIC Metal 1 (M1) ¹ / ₂ Pitch (nm)(contacted)	59	52	45	40	36	32	2.5	25
MPU gate in resist (nm)	38	34	30	27	24	21	19	17
MPU physical gate length (nm)	23	20	18	16	14	13	11	10
Overlay (3 sigma) (nm)	11.3	10.0	9.0	8.0	7.1	6.4	5.7	5.1
Gate CD control (3 sigma) (nm) [A]	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Contact after etch (nm)	67	58	51	45	40	36	32	28
Generic Mask Requirements								
Magnification [B]	1	1	1	1	1	1	1	1
Mask nominal image size (nm) [C]	38	34	30	27	24	21	19	17
Image placement (nm, multipoint) [D]	6.5	5.8	5.2	4.6	4.1	3.7	3.3	2.9
CD Uniformity (nm, 3 sigma) [E]								
Isolated lines (MPU gates)	2.2	2.0	1.7	1.6	1.4	1.2	1.1	1.0
Dense lines DRAM/Flash (half pitch)	5.6	4.9	4.4	3.9	3.5	3.1	2.8	2.5
Contact/vias	6.5	5.7	5.0	4.4	3.9	3.5	3.1	2.8
Linearity (nm) [F]	5.7	5.0	4.5	4.0	3.6	3.2	2.8	2.5
CD mean to target (nm) [G]	1.1	1.0	0.9	0.8	0.7	0.6	0.6	0.5
Data volume (GB) [H]	295	372	469	591	745	938	1182	1489
Mask design grid (nm) [I]	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.25
UV-NIL-specific Mask Requirements								
Defect size impacting CD (nm) x, y [J]	4.5	4.0	3.6	3.2	2.8	2.5	2.3	2.0
Defect size impacting CD (nm) z [K]	9.0	8.0	7.1	6.4	5.7	5.1	4.5	4.0
Mask substrate flatness (nm peak-to-valley) [L]	298	252	192	180	153	126	110	88
Trench depth, mean (nm) [M]	75– 119	67– 104	60–90	53–81	47–72	42–64	37–57	33–51
Etch depth uniformity (nm) [N]	3.8– 5.9	3.4– 5.2	3.0- 4.5	2.7- 4.0	2.4- 3.6	2.1- 3.2	1.9– 2.8	1.7- 2.5
Trench wall angle (degrees) [O]	87	87.3	87.6	87.9	88.1	88.3	88.5	88.7
Trench width roughness (nm, 3 sigma) [P]	3.4	3.0	2.7	2.4	2.1	1.9	1.7	1.5
Corner radius, bottom of feature (nm) [Q]	6.3	5.6	5	4.5	4	3.5	3.2	2.8
Corner radius, top of feature (nm) [R]	1.1	1.0	0.9	0.8	0.7	0.6	0.6	0.5
Trench bottom surface roughness (nm, 3 sigma) [S]	7.6	6.7	6	5.4	4.8	4.2	3.8	3.4
Template absorption [T]	<2%	<2%	<2%	<2%	<2%	<2%	<2%	<2%
Near surface defect (nm) [U]	51	45	41	36	32	29	26	23
Defect size, patterned template (nm) [V]	35	30	30	20	20	20	20	10
Defect density (#/cm ²) [W]	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01
Dual Damascene overlay: metal/via on template (nm, 3 sigma) [X]	11.3	10.0	9.0	8.0	7.1	6.4	5.7	5.1

 Table LITH5e
 Imprint Template Requirements—Near-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known

Manufacturable solutions are NOT known

Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	23	20	18	16	14	13	11
Flash ¹ / ₂ pitch (nm) (un-contacted poly)	18	16	14	13	11	10	9
DRAM/Flash CD control (3 sigma) (nm)	1.9	1.7	1.5	1.3	1.2	1.0	0.9
MPU/ASIC Metal 1 (M1) ¹ / ₂ Pitch (nm)(contacted)	23	20	18	16	14	13	11
MPU gate in resist (nm)	15	13	12	11	9	8	8
MPU physical gate length (nm)	9	8	7	6	6	5	4
Overlay (3 sigma) (nm)	4.5	4.0	3.6	3.2	2.8	2.5	2.3
Gate CD control (3 sigma) (nm) [A] Contact after etch (nm)	0.9 25	0.8	0.7 20	0.7 18	0.6 16	0.5 14	0.5
Generic Mask Requirements	23	23	20	10	10	14	15
Magnification [B]	1	1	1	1	1	1	1
Mask nominal image size (nm) [C]	15	13	12	11	9	8	8
Image placement (nm, multipoint) [D]	2.6	2.3	2.1	1.8	1.6	1.5	1.3
CD Uniformity (nm, 3 sigma) [E]							
Isolated lines (MPU gates)	0.9	0.8	0.7	0.6	0.6	0.5	0.4
Dense lines DRAM/Flash (half pitch)	2.2	2.0	1.7	1.6	1.4	1.2	1.1
Contact/vias	2.5	2.2	2.0	1.8	1.6	1.4	1.2
Linearity (nm) [F]	2.3	2.0	1.8	1.6	1.4	1.3	1.1
CD mean to target (nm) [G]	0.5	0.4	0.4	0.3	0.3	0.3	0.2
Data volume (GB) [H]	1876	2364	2978	3752	4728	5957	7505
Mask design grid (nm) [I]	0.25	0.25	0.25	0.25	0.125	0.125	0.125
UV-NIL-specific Mask Requirements							
Defect size impacting CD (nm) x, y [J]	1.8	1.6	1.4	1.3	1.1	1.0	0.9
Defect size impacting CD (nm) z [K]	3.6	3.2	2.8	2.5	2.3	2.0	1.8
Mask substrate flatness (nm peak-to-valley) [L]	72	56	45	36	29	24	21
Trench depth, mean (nm) [M]	30–45	26–41	23–36	21–32	18–29	17-26	15-22
Etch depth uniformity (nm) [N]	1.5-2.3	1.3-2.0	1.2-1.8	1.1-1.6	0.9–1.4	0.9-1.3	0.8-1.1
Trench wall angle (degrees) [O]	88.8	88.9	89.1	89.2	89.2	89.3	89.4
Trench width roughness (nm, 3 sigma) [P]	1.3	1.2	1.1	1.0	0.8	0.8	0.7
Corner radius, bottom of feature (nm) [Q]	2.5	2.2	2	1.8	1.6	1.3	1.1
Corner radius, top of feature (nm) [R]	0.5	0.4	0.4	0.3	0.3	0.3	0.2
Trench bottom surface roughness (nm, 3 sigma) [S]	3	2.7	2.4	2.1	1.9	1.5	1.2
Template absorption [T]	<2%	<2%	<2%	<2%	<2%	<2%	<2%
Near surface defect (nm) [U]	20	18	16	14	13	11	10
Defect size, patterned template (nm) [V]	10	10	10	10	10	10	10
Defect density (#/cm ²) [W]	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Dual Damascene overlay: metal/via on template (nm, 3 sigma) [X]	4.5	4.0	3.6	3.2	2.8	2.5	2.3

 Table LITH5f
 Imprint Template Requirements—Long-term Years

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

Notes for Table LITH5e and f:

[A] Wafer Minimum Feature Size—Minimum wafer line size imaged in resists. Line size as drawn or printed to zero bias (Most commonly applied to isolated lines. Drives CD uniformity and linearity.)

[B] Magnification—Lithography tool reduction ratio, N:1.

[C] Mask Nominal Image Size—Equivalent to wafer minimum feature size in resist multiplied by the mask reduction ratio.

[D] The maximum component deviation (X or Y) of the array of the images centerline relative to a defined reference grid after removal of isotropic magnification error.

[E] CD Uniformity—The three sigma deviation of actual image sizes on a mask for a single size and tone critical feature. Applies to features in X and Y and multiple pitches from isolated to dense. Contacts: Measure and tolerance refer to the area of the mask feature. For table simplicity the roadmap numbers normalize back to one dimension. sqrt (Area)—sqrt (Target Area).

[F] Linearity—Maximum deviation between mask "Mean to Target" for a range of features of the same tone and different design sizes. This includes features that are greater than the mask minimum primary feature size and up to three times the minimum wafer half pitch multiplied by the magnification.

[G] CD Mean to Target—The maximum difference between the average of the measured feature sizes and the agreed-to feature size (design size). Applies to a single feature size and tone. S(Actual-Target)/Number of measurements.

[H] This is the expected maximum file size for uncompressed data for a single layer as presented to a raster write tool.

[I] Wafer design grid multiplied by the mask magnification.

[J] Defect Size (nm) x, y—A mask defect is any unintended mask anomaly that prints or changes a printed image size by 10% or more. The mask defect size listed in the roadmap are the square root of the area of the smallest opaque or clear "defect" that is expected to print for the stated generation.

[K] Defect Size (nm) z—A mask defect is any unintended mask anomaly that prints or changes a printed image size by 10% or more. The mask defect size listed in the roadmap are the square root of the area of the smallest opaque or clear "defect" that is expected to print for the stated generation.

[L] Flatness (nm peak-to-valley) across the 110 mm \times 110 mm central area image field on a 6-inch \times 6-inch square blank. Flatness is derived from empirical residual layer uniformity (RLT) and magnification.

[M] Trench depth mean—Aspect ratio of trench set to 2:1. Low end determined by printed gate length, High end determined by MPU/ASIC half pitch [N] Trench depth uniformity in nm—Set to 5% of trench depth.

[0] Trench wall angle in degrees—Minimum wall angle necessary to keep the etch bias of the bilayer resist less than 5%. A selectivity of 10:1 between the etch barrier and transfer layer is assumed. Transfer layer aspect ratio starts at 1.5:1, and finishes at 2:1.

[P] Trench width roughness (nm, 3 sigma)—equivalent to resist line width roughness.

[Q] Corner radius, bottom of feature—critical to S-FIL/R (positive tone imprinting) where it defines the depth that the blanket ROI etch must reveal into the imprint material for good CD control (12.5% of CD). Non-critical for S-FIL (negative tone imprinting).

[R] Corner radius, top of feature—critical to S-FIL (negative tone imprinting) for good CD control, where it behaves as a resist "footing" in equivalent projection lithography (3% of CD). Non-critical for S-FIL/R (positive tone imprinting).

[S] Roughness in the bottom of an etched trenching resulting from imperfections in the plasma etch process or micromasking from the hard mask.

[T] Percent of incident light intrinsically absorbed by the 6.3 mm thick substrate at 365 nm. This is to minimize heating and thermal distortion and maximize equipment throughput.

[U] This is the maximum defect size for the quartz substrate from the surface level to a depth of 200 nm.

[V] Defect size, patterned template—Defect size in nm on finished patterned template.

[W] Number of defects per square cm on a finished template.

[X] This is the via to metal line overlay requirement on a 3D template for landed vias.

Year of Production	2008	2009	2010	2011	2012	2013	2014	2015
DRAM ¹ / ₂ pitch (nm) (contacted)	57	50	45	40	36	32	28	25
DRAM/Flash CD control (3 sigma) (nm)	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.1
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	59	52	45	40	36	32	28	25
MPU gate in resist (nm)	38	34	30	27	24	21	19	17
MPU physical gate length (nm)	23	20	18	16	14	13	11	10
Gate CD control (3 sigma) (nm)	2.3	2.1	1.9	1.7	1.5	1.3	1.2	1.0
Overlay (3 sigma) (nm)	11.3	10.0	9.0	8.0	7.1	6.4	5.7	5.1
Contact after etch (nm)	67	58	51	45	40	36	32	28
Data Volume (GB)	260	328	413	520	655	826	1040	1311
Grid Size (nm)	0.5	0.5	0.5	0.25	0.25	0.25	0.25	0.25

Table LITH6a Maskless Technology Requirements—Near-term

		0.			e		
Year of Production	2016	2017	2018	2019	2020	2021	2022
DRAM ¹ / ₂ pitch (nm) (contacted)	22	20	18	16	14	0	0
DRAM/Flash CD control (3 sigma) (nm)	1.9	1.7	1.5	1.3	1.2	1.0	0.9
MPU/ASIC Metal 1 (M1) ¹ / ₂ pitch (nm)(contacted)	23	20	18	16	14	13	11
MPU gate in resist (nm)	15	13	12	11	9	8	8
MPU physical gate length (nm)	9	8	7	6	6	5	4
Gate CD control (3 sigma) (nm)	0.9	0.8	0.7	0.7	0.6	0.5	0.5
Overlay (3 sigma) (nm)	4.5	4.0	3.6	3.2	2.8	2.5	2.3
Contact after etch (nm)	25	23	20	18	16	14	13
Data Volume (GB)	1651	2080	2621	3302	4161	5242	6605
Grid Size (nm)	0.25	0.25	0.25	0.25	0.125	0.125	0.125

Table LITH6b Maskless Technology Requirements—Long-term

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known

POTENTIAL SOLUTIONS

The potential solutions for leading-edge, critical layer lithography are presented in Figure 67. The order of the options represents the probability of a particular technology to be the dominant solution for a given technology generation with the most probable options listed first. All of the infrastructure required to use the lithography technologies at the time shown must be ready—including tools, masks, and resist. Optical lithography at 193 nm wavelength is expected to be the dominant approach through DRAM 45 nm half pitch, with EUV, ML2, and imprint possibly appearing at 32 nm half pitch, although more likely at 22 nm half pitch. Immersion lithography could extend optical lithography to 32 nm half pitch if lens materials with high index and higher index fluids can be developed in time. Research is also ongoing into breaking the pattern into two masks, each mask having minimum half pitch two times the minimum half pitch to be printed on the wafer. This dual-mask exposure technique could be used to extend 193 nm immersion lithography beyond DRAM 32 nm half pitch if resists suitable for double exposure and adequate mask alignment could be developed. Software for optimally dividing the pattern into two masks would need to be developed, and the use of two masks would have to be less expensive than alternative technologies.

The post-optical alternatives are potential solutions at and below DRAM 32 nm half pitch. Of the possible alternative technologies, multiple geographical regions consider EUV, maskless, and imprint lithography as potential successors to optical lithography. Considering only post-optical approaches, EUV is viewed as the most likely for 32 nm and 22 nm half pitch patterning. Maskless lithography has been applied to niche applications in development for prototyping and transistor engineering and to low volume application specific integrated circuit (ASIC) production, but its role could be expanded. Breakthroughs in direct-write technologies that achieve high throughput could be a significant paradigm shift, eliminating the need for masks and resulting in cost and cycle-time reduction. Maskless lithography for application beyond prototyping is currently in the research phase, and many significant technological hurdles will need to be overcome for ML2 to be viable for cost-effective semiconductor manufacturing. Imprint lithography has the potential to be a cost-effective solution, but there are a number of problems that need to be solved for this to happen, including the

difficulties associated with $1 \times$ templates, defects, template lifetime, and overlay. It is unclear whether any technology currently identified as a potential solution will indeed be capable of meeting the requirements for DRAM 16 nm half pitch and below, necessitating innovative technology development. Among these, directed self-assembly, where the molecular structure of the imaging material drives the sub-lithographic feature sizes and control is looked at as a viable option.

Although many technology approaches exist, the industry is limited in its ability to fund the simultaneous development of the full infrastructure (exposure tool, resist, mask, and metrology) for multiple technologies. Closely coordinated global interactions within industry and between industry and universities are necessary to narrow the options for these future generations and focus support to enable one or perhaps two technologies to be ready for manufacturing at the desired time. The introduction of non-optical lithography will be a major paradigm shift that will be necessary to meet the technical requirements and complexities that are necessary for continued adherence to Moore's Law at DRAM 32 nm half pitch and beyond. This shift will drive major changes throughout the lithography infrastructure and will require significant resources for commercialization. These development costs must necessarily be recovered in the costs of exposure tools, masks, and materials.

Notes: RET and lithography friendly design rules will be used with all optical lithography solutions, including with immersion; therefore, they are not explicitly noted.

Figure LITH5 Lithography Exposure Tool Potential Solutions

CROSSCUT NEEDS AND POTENTIAL SOLUTIONS

The crosscut technology needs and potential solutions involving Lithography, *ESH*, *Factory Integration*, *Yield Enhancement*, *Metrology*, *Modeling and Simulation*, device and circuit performance, and *Emerging Research Devices* and *Emerging Research Materials* are outlined in this section.

ENVIRONMENT, SAFETY, AND HEALTH

The recent discussion over the continued use of perfluoroalkyl sulfonates (PFAS) in photochemicals has shown that longand commonly used materials can have ESH issues that are being understood only recently. The introduction of new technologies necessarily means the use of materials and chemicals whose health and environmental implications are even less well known. The introduction of nanoparticles will also require careful consideration of the ESH consequences of substances of sizes comparable to or smaller than biological materials. The efficiency of EUV sources also needs to be maximized to minimize the facility and power requirements to operate these sources at the power desired for high throughput EUV lithography. Specifically, the wall-plug efficiency of the sources needs to be increased to minimize the power required to generate EUV photons and to cool the source components. Practices for use and disposal of the chemicals utilized in lithography must continue with careful regard for the safety of workers and their environment. Refer to the *Environment*, *Safety*, *and Health* chapter for comprehensive information and for a link to a new chemical screening tool in the electronic chapter (*Chemical Restrictions Table*).

FACTORY INTEGRATION

To maintain adequate process control, advanced process control capabilities are essential in the lithography cluster in the wafer fab. These capabilities are becoming increasingly important in mask making facilities as well, but their implementation for mask making is still much less mature. Leveraging the learning from the wafer factory automation experience will also be essential. Several mask shops have developed custom solutions for automating data handling for defect inspection and repair. Further opportunities for automation exist. Leveraging the use of existing standards that are used today in wafer fabs, such as the adoption of SECS/GEM into the mask making tool infrastructure, will help reduce manufacturing errors.

An accurate wafer tracking system across various process modules is required to identify the working flow of any wafer in process. Several integrated metrology modules able to evaluate one or more than the following list of parameters—CD, litho stack thickness, target profile, overlay, macro inspection with automated defect classification and wafer flatness are also recommended. Track and stepper/scanner should be able to use data recorded by any kind of internal or external sensors to adjust processes. Other requirements, which may call for major upgrades of equipment software and in several cases even of related hardware, are the possibility to simultaneously manage different module flows on tracks to accommodate optimal metrology sampling plans and the ability to accept overrides to downloaded (or selected) recipe set points. Moreover, on any track module it is desirable to be able to update all relevant set points wafer by wafer, even within the same lot. On the exposure tool, the software should allow the host to update dose, focus/tilt and overlay input parameters wafer by wafer, even within the same lot or perhaps for each exposure field. Calibration, self-calibration and matching activities on metrology modules should be allowed without a significant loss in litho cell throughput.

YIELD ENHANCEMENT

Yield enhancement is expected to become a major challenge, as critical defect sizes become smaller than the limits of optical detection. Inspection systems are increasingly challenged to meet the required sensitivity and speed requirements. Non-optical methods of defect detection have not yet been demonstrated to have the acquisition rates required for controlling defects in semiconductor manufacturing. Furthermore, die-to-database inspection of wafers is probably required for using ML2.

Design for manufacturing practices are being used and need to be further developed to minimize systematic sources of yield loss. Control of airborne molecular contamination (AMC) is also critical to maximize yield by minimizing local poisoning of resist and minimizing the formation of progressive defects on masks during exposure. See the *Yield Enhancement* chapter for quantitative AMC control requirements related to lithography. Mask handling practices to maintain EUV masks and imprint templates (without pellicles) free from defects remains a significant challenge.

METROLOGY

The rapid advancement of lithography technology and resultant decrease in feature dimensions continues to challenge wafer and mask metrology capability. The existing precision of critical dimension measurement tools does not meet the somewhat relaxed 20% measurement precision-to-process tolerance metric for the most advanced technology generations. Precision includes measurement tool variation from short- and long-term tool variation as well as tool-to-tool matching. Wafer and mask CD technology is evolving to meet the need for 3D measurements. A key requirement is measurement of line width roughness. Measurement precision for LWR must be smaller (better) than that needed for line width. The

quantitative effects of line width roughness on device performance need to be better understood to optimize metrology for LWR.

Overlay metrology is also challenged by future technology generations. Memory makers are requiring more stringent overlay control to achieve desired circuit yields. Traditional overlay test structures do not capture all possible overlay errors that can occur during use of phase shift and optical proximity correction masks. The expected usage of double exposure/double processing techniques will require even more accurate measurements to guarantee the adequate degree of alignment between the two masks composing the final layer layout.

The complete discussion of Lithography Metrology is located in the Lithography Metrology and Microscopy sections of the *Metrology* chapter. The lithography metrology technology requirements and potential solutions are also presented in that chapter.

MODELING AND SIMULATION

Support from modeling and simulation is critical both to push the limits of traditional optical lithography and to assess new next generation lithography technologies. The application of simulation tools in lithography largely benefits from the well-known physical basis of Maxwell's equations that govern lithographic imaging. Applying these equations to model lithographic imaging requires a problem-specific and efficient implementation in simulation tools. Furthermore, an intimate link between equipment-scale and feature-scale simulation is required for state-of-the-art lithography simulation. Equipment scale effects often require modeling with random variables with user-defined or user-measured probability distributions.

New techniques used in future next generation lithography techniques, such as replacement of lenses by multilayer mirrors and the use of reflecting masks for extreme ultraviolet lithography must be appropriately modeled and included in the simulation programs. Mask pattern generators and some ML2 options involve imaging with electrons. Simulations of stochastic space charge effects, geometrical aberrations and electron optical lens design performance using either magnetic or electrostatic lens elements are needed. Support from simulation for narrowing down the technology options has been and will continue to be important.

With the current introduction of immersion lithography several additional requirements for modeling and simulation result. Optical systems with NA >1.20 must be simulated, which especially requires the appropriate treatment of polarized illumination and partial polarization by mask structures and materials. Simulation should also help to assess whether specific defects are due to bubbles in the immersion liquid.

A specific challenge for lithography modeling and simulation is to accurately predict the behavior of state-of-the-art photoresists over a wide range of imaging and process conditions. For these, better physical/chemical models must be developed to predict three-dimensional resist geometries after development and process windows, including effects such as line-edge roughness. Better calibration techniques are required both for model development and for customizing models implemented in commercial tools to appropriately describe the photoresists in question. Calibration obviously depends on the quality of input data, for example, CD measurements. Therefore, it is necessary to better understand and estimate measurement errors. Systematic errors should be dealt with by models of the measurement tools, such as CD-SEMs. With the growing importance of LWR and LER, lithography simulation needs to contribute to the assessment of their influence on device and interconnect performance (LER) and variability (LWR). Since the roughness of etched structures and not the resist pattern ultimately affects device performance, intimate coupling between resist and etching simulation is indispensable. Intimate links with etching simulation must also be established also to predict the geometry of non-ideal mask edges that frequently result from mask-making lithography steps.

A specific requirement for lithography modeling and simulation is the need for very efficient simulation tools that allow the simulation of large areas and/or the conduction of simulation studies for a multitude of variations of physical parameters or layouts to support growing design for manufacturing needs. In fact, lithographic simulations of full-chip layouts are now needed to verify OPC and phase assignment data to avoid expensive masks being fabricated with errors or with corrections having only marginal performance. These simulations must be reasonably accurate and execute at high speed to evaluate the entire layout in a reasonable amount of time.

Besides models of image formation and resist profile generation in the lithography process, mechanical models are also critical for designing lithography tools. Refinement and application of finite element methods is important for assuring exposure tools, masks and wafers remain stable enough to meet demanding overlay tolerances. Static and dynamic models of lens mounting stability, stage stability and also aspects of exposure tool hardware design are critical. Static and

dynamic mechanical models are also critical for designing adequate mounting methods for masks and wafers to maintain desired position under high stage acceleration values and to maintain desired flatness. Equilibrium and non-equilibrium models of thermal effects are also essential for exposure tool design, especially for modeling heating of the immersion fluid in immersion lithography and its effect on distortion and aberrations. Models of fluid flow for immersion have also been essential in designing fluid delivery systems that minimize immersion-specific defect formation. Details on developments needed to satisfy these requirements are given in the *Modeling and Simulation* chapter

INTER-FOCUS ITWG DISCUSSION

Gate CD and line width roughness control capability impacts devices (Refer to the 2007 ITRS chapters for Process Integration, Devices, and Structures [PIDS]), Front-End Processes (FEP), Metrology, and Design. Depending upon the level of CD control that is possible, there will be more or less stringent requirements on the other processes that affect transistor performance, such as implant, diffusion and etch. Tight CD control will require metrology that is capable of supporting the control requirements. Design will need to take into account the collective capabilities of all processes that affect transistor performance. The Design TWG simulated circuit delay and power variability as a function of the most significant process and device variables. The simulations indicated that increasing the CD control requirement to $\pm 12\%$ would result in a tolerable variation of circuit delay and power variation given the significant variations of all of the significant parameters affecting these circuit attributes.

IMPACT OF FUTURE EMERGING RESEARCH DEVICES AND MATERIALS

Emerging devices are expected to impact lithography in at least three areas. First, a number of devices that have been considered require critical layer patterning over non-planar substrates, which will require lithographic solutions that can provide tight CD control over the topography. For example, bilayer resists represent a possible solution to this problem. Large depth-of-focus may become a compelling advantage for certain lithographic technologies. Second, emerging devices and materials could provide relief for the control of gate CDs. This will have an impact on all aspects of lithographic technology, including masks, resists, exposure tools, and metrology. Another potential area for cross-cut studies is the development of "litho-friendly" materials, like "directed self-assembly" molecules and suitable nanoparticles to be used to increase the refractive index of water to extend to its ultimate limits the 193 nm era, by allowing ultra-large NA values.