Strengthening the Global Semiconductor Supply Chain in an Uncertain Era

Slides for webinar

APRIL 6, 2021
The semiconductor industry ranks high simultaneously in both R&D and capital intensity.

R&D as % of Revenues, 2019

- Design: 12%
- Manufacturing: 6%
- Rest of value chain: 4%

Capital Expenditure as % of Revenues, 2019

- Rest of value chain: 2%
 - Design: 3%
 - Manufacturin**: 20%
- Semiconductors: 26%
- Utilities: 25%
- Power generation: 21%
- Broadcasting & Info. Services: 19%
- Trucking: 17%

1. Includes EDA and Core IP, Equipment and Materials
2. Includes Wafer Fabrication and Assembly & Test

Sources: BCG analysis based on Capital IQ data.
The global semiconductor supply chain based on geographic specialization has delivered enormous value for the industry.

Semiconductor Supply Chain

- **Precompetitive research**
 - EDA
 - Core IP
- **Design**
 - Logic
 - DAO
 - Memory
- **Manufacturing**
 - Wafer fabrication
 - Assembly, packaging and testing

Share by region (\% of worldwide total, 2019)

<table>
<thead>
<tr>
<th>Region</th>
<th>US</th>
<th>China</th>
<th>East Asia</th>
<th>Europe</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDA and core IP</td>
<td>74</td>
<td>3</td>
<td>20</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>Logic</td>
<td>67</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>DAO</td>
<td>37</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Memory</td>
<td>29</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Equipment</td>
<td>41</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Materials</td>
<td>11</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>Wafer fabrication</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>OSAT</td>
<td>38</td>
<td>13</td>
<td>4</td>
<td>6</td>
<td>43</td>
</tr>
</tbody>
</table>

Source: BCG analysis

Note: DAO = discrete, analog, and other (including optoelectronics and sensors); EDA = electronic design automation; OSAT = outsourced assembly and test

1. For EDA and core IP, design, manufacturing equipment and raw materials the regional breakdown is based on company revenues and company headquarters location. For wafer fabrication and OSAT is based on installed capacity and geographic location of the facilities
2. Mainland China
3. East Asia includes South Korea, Japan, and Taiwan

Costs savings vs. fully localized "self-sufficient" supply chains:

- **$0.9-1.2T** avoided upfront investment
- **$45-125B** annual cost efficiencies
- **35-65%** enabled reduction in semiconductor prices
Five key vulnerabilities identified in the semiconductor supply chain

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Description</th>
<th>Current examples</th>
<th>FOCUS</th>
<th>AREA IN REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High geographic concentration of some activities</td>
<td>Single points of failure which may be disrupted by natural disasters, infrastructure failures, cyberattacks or geopolitical frictions</td>
<td>• Wafer fabrication • Assembly, packaging & testing • Some specialty materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geopolitical frictions</td>
<td>Broad export controls over inputs or technologies with no viable alternative suppliers in other countries</td>
<td>• US-China frictions • Japan - S. Korea frictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National self-sufficiency policies</td>
<td>National industrial policies that seek broad import substitution or broadly discriminate against foreign suppliers, leading to distortion in global competition and risk of overcapacity</td>
<td>• China policies in pursuit of “self sufficiency” across the semiconductor value chain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talent constraints</td>
<td>Current growth in talent pool of Science & Engineering graduates is insufficient to meet the industry demand for technical talent</td>
<td>• All countries, but US in particular given leadership in R&D intensive activities and reliance on attracting & retaining global talent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stagnation in funding of basic research</td>
<td>Government programs and funding play a critical role in basic research, which is essential for the semiconductor industry</td>
<td>• US government-funded R&D in semiconductors has stagnated and is below overall level across all sectors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
50+ points of high geographical concentration across the supply chain (but not all with the same level of associated risk)

Value chain activities where one single region accounts for ~65% or more of global share

<table>
<thead>
<tr>
<th>Design</th>
<th>Front End</th>
<th>Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced processors (CPU, GPU, FPGA), and DSP</td>
<td>Logic: leading nodes (< 10nm)</td>
<td>Outsourced Assembly and Test (OSAT)</td>
</tr>
<tr>
<td>RFFE and cellular basebands</td>
<td>Logic: mature nodes (>= 10nm)</td>
<td></td>
</tr>
<tr>
<td>Data converter, switches, multiplexers and other analog</td>
<td>Memory</td>
<td></td>
</tr>
</tbody>
</table>

EDA & Core IP

23 equipment types, i.e. doping, process control
12 equipment types, i.e. photomask processing
3 equipment types, i.e. EUV lithography

Equipment & Tools

Select examples (not exhaustive):
- Photore sist, photomask
- Silicon wafers
- Packaging substrates
- Specialty gases (in aggregate)

Materials

Select examples (not exhaustive):
- Photore sist, photomask
- Silicon wafers
- Packaging substrates
- Specialty gases (in aggregate)

Sources: BCG analysis with data from Gartner, SEMI, UBS; SPEEDA
East Asia + China concentrate ~75% of the wafer fabrication capacity; in particular, ~90% of advanced logic capacity <10 nm is located in Taiwan

Breakdown of the Global Wafer Fabrication Capacity by Region, 2019 (%)

<table>
<thead>
<tr>
<th>Region</th>
<th>Logic</th>
<th>Memory</th>
<th>% of Global Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 10 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-22 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-45 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 45 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAO¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>US</td>
<td>12%</td>
<td>33%</td>
</tr>
<tr>
<td>China</td>
<td>China</td>
<td>16%</td>
<td>2%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Taiwan</td>
<td>20%</td>
<td>8%</td>
</tr>
<tr>
<td>S. Korea</td>
<td>S. Korea</td>
<td>19%</td>
<td>9%</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan</td>
<td>17%</td>
<td>22%</td>
</tr>
<tr>
<td>Europe Other²</td>
<td>Europe Other²</td>
<td>8%</td>
<td>7%</td>
</tr>
</tbody>
</table>

1. Discrete, analog and optoelectronics and sensors 2. Other includes Israel, Singapore and the rest of the world

Sources: BCG analysis with data from SEMI fab database
Enhancing the supply chain resilience through a focused approach: example of US minimum viable capacity for advanced logic (< 10nm)

Breakdown of Total US Semiconductor Consumption, 2019

- **Memory**: 28% (25% of global semiconductor sales $107B)
- **Advanced logic**: 34%
- **DAO**: 15%
- **Other logic**: 23%

$107B includes 25% of global semiconductor sales.

- **$107B**: 25% of global semiconductor sales
- **Advanced logic**: 34%
- **Other logic**: 23%
- **DAO**: 15%

1. Considering only leading node capacity (< 10nm)

2. Total Cost of Ownership - includes capex and 10 years of opex, before government incentives.

3. Includes both existing local/state incentives and potential new federal incentives

Sources: BCG analysis

Total US Advanced Logic Consumption: 34%

- **Other Infra**: 24%
- **Critical Infrastructure**: 9% (980 + 420)

- **Total US Consumption**: 10-year investment in new fabs for onshore coverage in 2030 ($B)
 - **Private sector + Government incentives**: 980 + 420
 - 60-65 new fabs
 - 6-7 new fabs

45 + 18 includes 2-3 new fabs of 20-35 kwpm.

Includes:
- Defense & Aerospace
- Telecom networks
- Energy, security and medical equipment
- Data centers of Government and essential sectors (telecoms, energy & utilities, healthcare and financial services)

1. Considering only leading node capacity (< 10nm)
2. Total Cost of Ownership - includes capex and 10 years of opex, before government incentives
3. Includes both existing local/state incentives and potential new federal incentives
The services and materials provided by Boston Consulting Group (BCG) are subject to BCG’s Standard Terms (a copy of which is available upon request) or such other agreement as may have been previously executed by BCG. BCG does not provide legal, accounting, or tax advice. The Client is responsible for obtaining independent advice concerning these matters. This advice may affect the guidance given by BCG. Further, BCG has made no undertaking to update these materials after the date hereof, notwithstanding that such information may become outdated or inaccurate.

The materials contained in this presentation are designed for the sole use by the board of directors or senior management of the Client and solely for the limited purposes described in the presentation. The materials shall not be copied or given to any person or entity other than the Client ("Third Party") without the prior written consent of BCG. These materials serve only as the focus for discussion; they are incomplete without the accompanying oral commentary and may not be relied on as a stand-alone document. Further, Third Parties may not, and it is unreasonable for any Third Party to, rely on these materials for any purpose whatsoever. To the fullest extent permitted by law (and except to the extent otherwise agreed in a signed writing by BCG), BCG shall have no liability whatsoever to any Third Party, and any Third Party hereby waives any rights and claims it may have at any time against BCG with regard to the services, this presentation, or other materials, including the accuracy or completeness thereof. Receipt and review of this document shall be deemed agreement with and consideration for the foregoing.

BCG does not provide fairness opinions or valuations of market transactions, and these materials should not be relied on or construed as such. Further, the financial evaluations, projected market and financial information, and conclusions contained in these materials are based upon standard valuation methodologies, are not definitive forecasts, and are not guaranteed by BCG. BCG has used public and/or confidential data and assumptions provided to BCG by the Client. BCG has not independently verified the data and assumptions used in these analyses. Changes in the underlying data or operating assumptions will clearly impact the analyses and conclusions.