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First wave Al: Model-based
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Deep Learning Makes Driverless
Cars Better at Spotting Pedestrians
Pedestrian detection systems for cars could become

faster and more accurate with help from deep
learning algorithms

By Jeremy Hsu

Images: Statistical Visual Computing Lab/UC San Diego
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Jun 13th 2020 edition > Driverless cars show the limits of

today’s Al “Learn from lots of data”

They, and many other such systems, still struggle to handle the
unexpected

Accurate and Fast
but Unpredictable
FOOLING THE AL
Deep neural networks (DNNs) are brilliant at image
recognition — but they can be easily hacked.
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Third wave Al: Explainable

“Combine first and second wave
Al to generate explanations”

Accurate and Fast and Accountable

and Ethical, Fair, Adaptable,
and Climate Sustainable

A 20-Year Community Roadmap for
Artificial Intelligence Research in the US
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The Next Wave of Al

How to get ahead
Federal investment critical for success
* Was true before (since WWI), still true now
Global competition: If we do not lead, others will

Education: the classroom of today builds the
Al leaders for tomorrow

Diversity: the next breakthrough could come
from anywhere

CcC
Computing Communtty Consortium

Next Wave Atrtificial Intelligence: Robust, Explainable, Adaptable,

Ethical, and Accountable

A Computing Community Consortium (CCC) Quadrennial Paper

Odest Chadwicke Jenkins (University of Michigan), Daniel Lopresti (Lehigh University), and Melanie
Mitchell (Portland State University and Santa Fe Institute)

We are now seeing the impact of decades of investment in artificial intelligence (Al) across our society.
In recent years, Al systems have been deployed in a broad array of application areas, including
healthcare, transportation, finance, design and manufacturing, education, scientific discovery, and
national security, among others. Many of these applications have addressed important societal
problems and directly improved peoples’ lives. However, broad beneficial use of Al applications are
often stymied by the limitations of today’s state-of-the-art systems. In this brief overview, we describe
the limitations of today’s Al systems and make recommendations for focus areas that will enable the
field to move to the next level in terms of robustness and trustworthiness.

The history of Al has included several “waves” of ideas. The first wave, from the mid-1950s to the 1980s,
focused on logic and symbolic hand-encoded representations of knowledge, the foundations of so-called
“expert systems”. The second wave, starting in the 1990s, focused on statistics and machine learning, in
which, instead of hand-programming rules for behavior, programmers constructed “statistical learning
algorithms” that could be trained on large datasets. In the most recent wave, especially in the last
decade, research in Al has largely focused on deep (i.e., many-layered) neural networks, which are
loosely inspired by the brain and trained by “deep learning” methods. However, while deep neural
networks have led to many successes and new capabilities in computer vision, speech recognition,
language processing, game-playing, and robotics, their potential for broad application remains limited
by several factors. Deep neural networks typically require “supervised” training on large datasets—that
is on thousands to millions of examples that have been manually labeled; these labeling efforts often
require prohibitive amounts of human labor. Moreover, the labels can contain errors as well as both
overt and subtle biases. Deep learning methods also require large computing infrastructure, whose
electricity use can have negative environmental impacts.




