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Street dates for lead generation products - top silicon manufacturing company

[Courtesy Wei@Harvard]
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Technology innovation –
limited benefits from device scaling

‘90s rule of thumb for architects:

Architecture-level  performance improvement:
- 20% due to architecture innovation
- 80% due to device scaling



Emergence of specialized architectures
+Growing domain offerings
+Great performance/energy boosts
- 1 app → 1 accelerator
- Ad-hoc interfaces
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2019 - Sylvester et al. 
22nm low-power DNN

2020 – Skadron et al. – Fulcrum: bit-
level parallel PIM accelerator

2021 - Austin et al. 
sequestered encryption 
accelerator

2016 - Lee et al.  
image processing 
accelerator



Accelerators from the ADA Center
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Applications Driving Architectures 
(ADA) Research Center
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5-year endeavor: 2018-2022
21 faculty members, 130 graduate students

Co-sponsored by  and 

GOAL: reignite computing system 
innovation for the 2030-2040 decade through:
- sustained scalability and 
- sustained value creation



Managing design under vast heterogeneity

1. [ENABLE MORE IDEAS TO TRANSFORM INTO NEW DESIGNS]
Lower expertise required to design hardware systems

→ reignite innovation

2. [BOOST OPTIMIZATION OPPORTUNITIES]
Blur hardware abstraction layers and cross-optimize

3. [IMPROVE SILICON USE EFFICIENCY] 
Need flexible fabric for specialized accelerator synthesis

→ lower carbon emissions associated with computing
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Solution 1: Lower expertise needed 
to design hardware systems

• Domain-specific languages (DSL) boost programmer’s productivity
• DSLs are approachable by a broad population of software engineers
- High-level compilers today are unable to leverage specialized 

accelerator hardware (APIs are the practice)

How does ADA approach this goal?
• Enabling compilation flows from DSLs to accelerator-rich 

heterogeneous architectures (3LA)
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Innovation is powered by people
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University of Michigan – selected EECS course enrollments
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Mapping DSLs to accelerators: 3LA

[Malik, Tatlock, Wei]

Tensorflow

Pytorch

Keras

ONNX

SOFTWARE PRIMITIVES HARDWARE FUNCTIONS



Enabling agile research:  
Test chip frameworks

SoC scaffold library and example to 
simplify SoC design integration
• AXI + protocol checker
• Fully-synthesize-able, all-digital DDR1 

PHY and memory controller
• Programmable DMA controller
• SoC examples to highlight HLS flow, 

e.g., FlexASR

[Brooks, Taylor, Wei]

SoC Scaffold Framework
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CHIPKIT
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Allow new accelerator chips to be rapidly deployed 
into a platform without having to design custom 
systems that support them -- includes
• Logical and physical socket
• I/O links and networks
• Accelerator motherboard



Solution 2: blur hardware abstractions layers, 
cross-optimize 

Why: it provides many additional optimization opportunities, which 
have traditionally been overlooked

How does ADA approach this?
1. Explore cross-optimization while compiling in 

end-to-end design flows (PriMax)
2. Design exploration tools that allow computer architects to explore 

device parameters (NVMexplorer)
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PRIMAX: selective primitive mapping

• Mapping DSL 
primitives → 
accelerator 
functions leads to 
mixed performance 
results

• PRIMAX identifies 
when the mapping 
is beneficial and 
applies it 
selectively [Bertacco] 13
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Case study:
DSL Accel

GraphIt → OMEGA                                 
GraphPull

Geomean Speedups
PriMax 1.57x
Optimal: Both Targets 1.58x
Optimal: OMEGA Only 1.45x
Optimal: GraphPull Only 1.17x



Design exploration tools: NVMExplorer

14[Brooks, Wei]



Solution 3: Flexible fabrics for
accelerator synthesis

• It is impractical to produce chips with hundreds of accelerator types
• Many computing systems must be capable of running a wide range of 

applications

Must fit many different accelerators in a small silicon footprint
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ADA: designing for reconfigurable hardware
• [Kasikci] SignalCat & LossCheck – debugging support for FPGA designs

Monitor signals over time, identify data losses in datapaths

• [Tatlock] Lakeroad - ISA synthesis for FPGAs  
make FPGA-synthesis similar to software compilation,
to improve compiler predictability

• [Taylor] BaseJUMP flow for FPGAs
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HLS Dahlia

behavioral Verilog

intermediate 
representation

FPGA-level 
structural Verilog

PyMTL3 …

FPGA “ISA”



In summary:

1. [ENABLE MORE IDEAS TO TRANSFORM INTO NEW DESIGNS]
Lower expertise required to design hardware systems

→ reignite innovation

2. [BOOST OPTIMIZATION OPPORTUNITIES]
Blur hardware abstraction layers and cross-optimize

3. [BETTER SILICON EFFICIENCY] 
Need flexible fabric for specialized accelerator synthesis

→ lower carbon emissions associated with computing
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Thank you
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Joint University Microelectronics Program
www.src.org/program/jump
Semiconductor Research Corporation
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Intelligent Memory and Storage
Kevin Skadron

Director, CRISP Center
Dept. of Computer Science

University of Virginia



[From Decadal Plan for Semiconductors presentation by Sean Eilert, Micron]

2



• “Memory wall” has been discussed for nearly 30 years
• But caches, interfaces etc. can no longer hide this wall
• Big data, irregular access patterns, poor reuse
• High energy costs to move large volumes of data
• More algorithms that are data-intensive (ie, low ops/byte)
• More and more tasks are stalled on memory/storage access

• Tail latencies also getting worse

• Memory and storage have much higher internal bandwidth than they 
can transmit

• The closer computation is to the data, the lower the power

Why Intelligent Memory and Storage?



• Where to put the intelligence? Huge design space!
• In the bitcells? At the chip interface? In the controller? Etc.
• As we move further away from the bitcells, we lose bandwidth but 

also reduce design and area overhead
• CRISP identified several candidate designs at different 

performance/complexity design points
• How to orchestrate placement of data and compute?

• “Near data computing” is hard in heterogeneous/distributed systems 
if inputs are in different places

• Important to look at workflows, not just kernels
• For memory, do we want 

• Memory that can accelerate some computations?
• Accelerators that happen to use memory technology?

• For storage, do we still need overheads of a block-based interface?
• What does it take for emerging device technologies to find a market?
• Making the programmer’s life easy is essential, or nobody will use it 

• High-level, portable abstractions

Design Questions

Bank
Inter
-face

Fulcrum, 
HPCA 2020



conix.io

CONIX Perspective on Advances and 
Challenges in Semiconductor Design

Anthony Rowe
Carnegie Mellon University



conix.io

CONIX: A Distributed Compute Paradigm Shift

Current Distributed Systems

Data Management, Machine Learning, Resource Management

Dynamics?Latency?

Cloud

Network

Edge

Communications, Edge Compute, Sensors, Actuators, Wearables Next Generation Systems



conix.io

Simply bringing cloud(-native) to the edge won’t cut it…



conix.io

Our benchmarks need to evolve...

Target #1



conix.io

Hardware design cycles are still too slow…



conix.io

Thanks!
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Growth in data movement demand

• Increase in traffic volume, number of devices, wireless

Source: Cisco Virtual Network Index

devices

wireless 
bandwidth

data



Growth in data movement demand

• New bandwidth-intensive and latency-sensitive workloads

high definition video AR/VR SmartCity, automation



Growth in data movement demand

• New bandwidth-intensive and latency-sensitive workloads

high definition video AR/VR SmartCity, automation



What does this mean?

• Past and recent datapoints:
• 70 TWh to run the Internet, LBNL, 06/2016
• 50 TWh to run China’s mobile network, 

Huawei, 07/2020
• Updated traffic predictions – no 

slowdown!
• EB/month cost?

• wide range based on factors: technology, 
distance, system scope, …  *

• 1.8 TWh /EB
• => 1.2 million tons of CO2 (EPA calculator)
• per EB

Ericsson Mobility Report (11/2020)

* https://www.wholegraindigital.com/blog/website-energy-consumption/

https://www.wholegraindigital.com/blog/website-energy-consumption/


What does this mean?

Impact of EB of mobile data @1.8 TWh/EB

2030 forecast:
200-300/month => ~ 3000 EB/year



Edge Computing and NextG Networking
Opportunities

• New technologies => Energy efficiency in the data path
• 5+G/6+WiFi/…, software functions/network server, … 

• Edge computing => Reduce/remove data movement
• Enabler for new applications
• Aligned with UN SDG, Exponential Energy Roadmap



Edge Computing and NextG Networking
Challenges

• Growth in demand
• Huawei estimate 5G transition from 

50TWh to 100TWh mobile network
• Deployment cost, scale, and 

challenges
• O(US$1000) per location
• Densification of infrastructure, urban 

deployment, ensuring coverage
• New power, thermal, packaging constrains 

for compute/accelerator, memory/storage, 
… technologies

• Datacenter-native technologies
• Natural cooling? PUE efficiency?

• Sustainability of access

FCC registered cellular tower 
locations (Crown Castle, …)
Total 217,346, as of Mar. 2017 



End-to-end Benchmarks for Edge Computing

benefits: Flexible deployment models, end-to-end 
characterization, support for different application 
libraries, accelerators

• End-to-end system prototyping:
• client/workload; edge stack + application(s); 

cloud backend 
• Edge infrastructure stack and services

• resource discovery, orchestration and 
allocation

• telco/mobile network stacks
• privacy, based on MPC

collaborations with UIUC/ILLIXR & other JUMP centers



© 2022 Arm
Andrea Kells, Director Research Ecosystem

JUMP has contributed many advances to the field of HW security across the stack:
• ADA: improving the performance, communication and storage of privacy-enhancing techniques
• CONIX: major contributions to the security of accelerators, and securing Wasm for distributed compte
• CRISP: advancing security issues related to in- and near- memory processing

But there are multiple challenges ahead:
• Increasing complexity: accelerators, chiplets, individual components
• Increasing connectivity: more ‘smart’ things - 29.2 bn Arm chips shipped in 2021
• Increasing specialization: there is no standard next-gen chip any more

What does all of this mean for hardware security?
How and where can the academic community make meaningful contributions?

JUMP and the Decadal Plan: the challenges and opportunities for HW security



© 2022 Arm

Andrea Kells, Director Research Ecosystem

Security has become everyone’s responsibility:
• Growing number and diversity of attack surfaces, increasing (potential) impact of breaches, complex 

global supply chains 

The opportunities for academic contributions are therefore huge, e.g.:
• Security v. energy efficiency
• Improving memory protection architecture
• Confidential compute – still in its infancy
• Self-healing components and systems
• Aging, reliability and security

Solutions will require a holistic approach, and therefore collaboration 
JUMP Centres are ideally placed: scale, convening power, visibility, reputation

JUMP and the Decadal Plan: the challenges and opportunities for HW security


	Intelligent Memory and Storage
	Slide Number 2
	Why Intelligent Memory and Storage?
	Design Questions
	Slide Number 5
	CONIX: A Distributed Compute Paradigm Shift
	Simply bringing cloud(-native) to the edge won’t cut it…
	Our benchmarks need to evolve...
	Hardware design cycles are still too slow…
	Thanks!
	Collaboration towards Decadal Plan Goals: Advances and Challenges in Semiconductor Design�Panel
	Growth in data movement demand
	Growth in data movement demand
	Growth in data movement demand
	What does this mean?
	What does this mean?
	Edge Computing and NextG Networking�Opportunities
	Edge Computing and NextG Networking�Challenges
	End-to-end Benchmarks for Edge Computing
	Slide Number 20
	Slide Number 21



