

Challenges facing semiconductor technologies

- We're moving to 'ubiquitous computing' and need significant computing power
- Number of elements used in chips has exploded from ~10 previously to ~60 now
- Fabrication requirements are increasingly complex
 - o Need for conformality, uniformity, stability
 - o Need to control edge placement error to reach yield
 - o Interfaces dominate at nanometer scale devices

"New process requirements driven by More than Moore and More Moore Device Integration Innovations," P. Leray and S. Steen, ALD/ALE 2022 Conference Presentation

Idealized Atomic Layer Deposition (ALD)

- Vapor phase technique for deposition of thin films
- Sequential, self-limiting surface reactions
- Can deposit variety of materials (metals, metal oxides,...)

Periodic Table of Materials Grown by ALD

Conformality by ALD is exceptional

Cross-sectional HAADF-STEM images and corresponding EDS maps, showing a stack of alternating TiO_2 and SiO_2 layers and a single layer of Al_2O_3 , all grown by plasma ALD on nanoscale trench structures.

Courtesy of K. Arts, M.A. Verheijen, W.M.M. Kessels and H.C.M Knoops (CC BY 4.0 license), image library at www.AtomicLimits.com, 2021.

Integrated circuits have many layers of deposited films

3D rendering by ptychographic X-ray computed tomography (PXCT) with identified elements

Holler, M., Guizar-Sicairos, M., Tsai, E. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017)

Stanford University, Department of Chemical Engineering

Application specific integrated circuit (ASIC) with wellestablished 110 nm CMOS technology

Wafer Fabrication Process Steps

Conventional wafer fabrication requires many steps across multiple tools

o Top-down process

Top Down Processing is Causing Challenges to Future Scaling

Main Challenge: Edge Placement Error from Alignment in Lithography

- Edge placement error is limiting yield and cost in chips today
- ► Smaller nodes will have even smaller tolerances
 - Need nanometer and subnanometer precision


```
Mameli et. al., ASD workshop, 2017
```


Example Application for Selective Deposition

Challenge

At tight pitches, mis-alignment causes via to metal shorts which result in high resistance and poor time dependent dielectric breakdown (TDDB) lifetime (defects often referred to as a fang or tiger tooth defect)

> Mis-alignment of via due to overlay error

Via to line short due to proximity

Fully Aligned Via (BEOL) Integration Solution: Fully Self Aligned Vias

Solution: Selective deposition of etch hard mask

Prototypical Area Selective ALD Process (2006)

Chen and S. F. Bent, Adv. Mat., 18 (2006) 1086-1090

SAM-Assisted AS-ALD on Metal/Dielectric Patterns

 ODPA SAM blocking process demonstrated on features <50 nm in size

- 15 cycles ZnO ALD
- EDX and TEM confirm no growth on Cu substrate

Cu

та

zn

Si

TSMC presentation at Jan 2022 IEDM meeting

Selective DOD of silicon oxycarbide low-k dielectric

- Selective DoD growth (SiO₂ versus Al or Cu)
- Proof of concept for both the positive and negative pattern transfer of the low-k films onto Cu/AI patterns.

X. Yu, D. Bobb-Semple, I.-K. Oh, T.-L. Liu, R. Closser, W. Trevillyan and S. F. Bent, *Chem. Mat.*, **33** (2021) 902–909

Inhibitor Choices for Chemically Similar Materials

AS-ALD of ZnO on Patterns with Chemically Similar Materials

Model System for Precursor Design in Selective ALD: Al₂O₃

Elucidating critical precursor properties for selective CVD (ALD and MOCVD)

Al₂O₃ ALD Selectivity Depends Strongly on Precursor Choice

Selectivity of Al₂O₃ between Growth (Si) and Non-growth Surfaces (ODTS/Si)

Al(C₂H₅)₃ Precursor Provides Good Selective Al₂O₃ Deposition on Patterns

• 50 cycles AI_2O_3 with $AI(C_2H_5)_3$ on ODTS-treated Pt/SiO₂ patterns

• Selectivity of 0.95 is obtained from the Auger Al line scan

I.-K. Oh, T. E. Sandoval, T.-L. Liu, N. E. Richey, and S. F. Bent, Chem. Mat., 33 (2021) 3926–3935

3-step AS-ALD Cycle with Small Molecule Inhibitor

- Process uses 3 alternating pulses in ABC sequence: acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O₂ plasma reactant (step C)
- SiO₂ AS-ALD process is selective to GeO₂, SiN_x, SiO₂, and WO₃ over Al₂O₃, TiO₂ and HfO₂ surfaces

Organosilane Small Molecule Inhibitors (SMIs)

- Ambient vapor-phase delivery
- Study effects of silane molecular structure

Trimethoxypropylsilane (TMPS)

• Using triethylaluminum (TEA) vs. trimethylaluminum (TMA) allows for more selective growth

J. Yarbrough, F. Pieck, D. Grigjanis, I.-K. Oh, P. Maue, R. Tonner, and S. F. Bent, Chem. Mat, 34 (2022) 4646–4659

Complexities of ALD

What we maagine...

Geyer, S.M., et al. J. Appl. Phys. 2014

Pt Nucleation Enhancement with Small Molecule Surface Activation

Surface treatment prior to ALD incorporates less than a single monolayer of impurities

HVM Requirements for ALD

- Conformality (step coverage)
- Controllable film thickness at angstrom level
- Film continuity / uniformity / pinhole-free
 - o Continuity at few nanometer scale film thickness
 - o Film roughness
- Compositional control
 - o Homogeneity in ternary—or greater—materials
- Reproducibility
- Selectivity (for some applications)
- Process tolerance
 - o Temperature, flow, pressure
- Cost and throughput

Stanford University

- o Rong Chen
- o Xirong Jiang
- o Junsic Hong
- o Fatemeh Hashemi
- o Dara Bobb-Semple
- o Josiah Yarbrough
- o Alex Shearer
- o Camila de Paula
- o Dr. II-Kwon Oh
- o Dr. Woohee Kim
- o Dr. Nathan Richey
- o Tzu-Ling Liu
- o Maggy Harake
- o Dr. Xiaoyun Yu
- o Dr. Yujin Lee
- o Richard Closser
- o Richard Trevillyan
- o Prof. Tania Sandoval

Acknowledgments

Lam Research

0

o Dr. Katie Nardi

Dr. Nerissa Draeger

o Dr. Dennis Hausmann

- Merck/EMD Group
- o Dr. Ravi Kanjolia
- o Dr. Mansour Moinpour
- o Dr. Jacob Woodruff
- o Dr. Bhushan Zope
- o Dr. Ron Pearlstein

Stanford University, Department of Chemical Engineering

Semiconductor Research Corporation

Merck KGaA, Darmstadt, Germany 350 Research Award

APPLIED

make possible

SAMSUNG

Leipzig University

- o Fabian Pieck
- Patrick Maue
- o Daniel Grigjanis
- o Prof. Ralf Tonner-Zech

U.S. DEPARTMENT OF