

American Semiconductor Research

Leadership Through Innovation

November 10, 2022

2022 CHIPS & SCIENCE ACT

Signed summer 2022 in historic win for the industry

\$39 billion manufacturing incentive program

25%
manufacturing
investment tax

credit (estimated at \$24.3 billion over

\$13 billion in R&D and workforce investment

CHIPS R&D **IMPLEMENTATION**

Goal. Promote collaborative RSD ecosystem Key investment areas for NSTC and NAPMP

Support transition pathways for innovative technologies

Upgrade research infrastructure for early-stage ecosystem

Establish and expand access for mid-stage development and prototyping infrastructure

Convene industry, academia, and government for collaborative innovation partnerships

Promote dynamic workforce programs to increase and hone domestic workforce

American **Semiconductor Research: Leadership Through Innovation**

semiconductors.org

CHIPS AND SCIENCE - FUNDING **ALLOCATION**

\$13B ov

Authorized programs in CHIPS Act

Dept.	Program	Statutory objectives	_
White House Office	Sub-committee on microelectronics leadership	Create national strategy on microelectronics research	
Commerce	Industrial Advisory Committee	Assess effectiveness of national strategy	
Discussed in	Semiconductor incentives	Construct, expand, or modernize fabs located in US	\$11E
this report	National Semiconductor Technology Center (NSTC)	Strengthen security of supply chain and economic competitiveness; public-private partnership	
Commerce (NIST)	National Advanced Packaging Mfg. Program	Strengthen domestic advanced test, assembly, packaging capabilities	
	Manufacturing USA institute	Develop and cultivate semi. manufacturing capabilities in the US	
	Microelectronics research	Accelerate R&D for metrology of next-generation microelectronics	
Defense	National Network for Microelectronics Develop.	Enable lab-to-fab transition of microelectronics innovations	•— \$2E
	Defense Microelectronics	Incentivize consortia for measurably secure microelectronics	
Treasury/State	Multilateral Semiconductor Security Fund	Develop and promote secure semi. supply chains with allies	
	Dedicated funding	No Dedicated funding	

SEMICONDUCTOR RESEARCH - STAGES OF **DEVELOPMENT**

Innovations traverse 5 phases before volume production

Portfolio

Many, small bets

Rising investment needs. financial risks by orders of magnitude

Few, large bets

1-2 innovations in production

Phases of innovation leading to volume production

research

Precompetitive, often fundamental research designed to expand knowledge. findings typically shared widely

Applied research Often post-competitive and proprietary research that can occur in companies or academia and builds on basic research

Pathfinding and prototyping (development)

Viability assessment and creation of a small number of working semiconductors that meet desired criteria

Piloting (development)

Manufacturing of finished semiconductors in scale amounts on actual fabrication processes

Scaling to volume production (development)

Scaling up production of pilot manufacturing processes to commercially useful volumes

Public support example (non-exhaustive)

- National labs (e.g., Sandia, Lincoln Laboratory, etc.)
- Nanofabrication facilities network
- DoD Manufacturing Technology (ManTech)
- Incentives (e.g., tax credits)
- Various security and defense programs (e.g., In-Q-Tel)
- Incentives (e.g., tax credits)
- Various security and defense programs (e.g., Title III DPA)

More collaborative

More proprietary

RESEARCH LANDSCAPE: NSTC/NAPMP & Valley of

PARTNERSHIP FROM RESEARCH THROUGH **PRODUCTION**

Col

To be successful, the NSTC and NAPMP should have wide industry representation to:

- Build a diversified technology and infrastructure portfolio for research and development
- Facilitate collaborative development more effectively
- Maintain a wide network of industry partners, including their suppliers and needs of both

