NXP Power Management
Innovation Addressing Emerging Megatrends & Challenges

Dr. Alaa El Sherif
Sr. Fellow & Chief Architect,
Business Line Advanced Analog

May 2024
The Promise & Challenge of AI Considering Energy Shortage & Sustainability Priorities

- **AI & Machine-Learning** trends enabled by advancement in HPC GPUs & CPU’s and **high-speed networks** continue to drive **smarter systems** that improve our lives, experience, safety and productivity across many spaces.

- **AI-Powered Systems Dramatic Advancements:**
 - Automotive E/E Architecture (Software Define Vehicles),
 - mobile/personal and IoT systems (smart wearables & personal health devices, smart homes/cities),
 - Medical imaging & diagnosis, robotic surgeries,
 - Factory automation, agriculture, warehouse inventory and logistics.

- **AI-induced Unprecedented Energy Demand:**
 - Over 50 billion cloud-connected sensors and IoTs devices in 2020.
 - 700W Nvidia’s GPU H100 was released in 2022, AI servers also run power-hungry CPUs & network cards.
 - In 2022, about 460 TWh were consumed by all data centers (5% of global usage).
 - By 2027, additional 1.5 million AI servers are projected annually.

- **Sustainability & e-waste Reduction:** Governments and industries have been promoting and enforcing new measures and standards, such as adoption of 48V power on data centers, USB-C EPR and BEV’s.

- **Efficient Energy Management Architectures in the PMIC’s** have become **extremely critical** to mitigate the AI HPC SOC technology challenges and extend the ESG priorities, especially with the energy shortage the world is facing.

- Additionally, **Extended Functional Safety & Predictive Maintenance** schemes in the PMIC’s have become more vital and significant components.
Megatrends’ Key Benchmarks Addressed by NXP Power Management Solutions

COMPUTE PERFORMANCE
KEEPS INCREASING

- TFLOPS
- 0.2 → 100
- 2015 → 2025

SOC TECHNOLOGY
KEEPS SCALING

- 40nm → 28nm → 16nm → 5nm → 3nm

SDV & BEV E/E ARCHITECTURE
EVOLUTION

SUSTAINABILITY
Energy Efficiency / E-Waste Reduction

- EU: USB-C standardization save 980t/yr on e-waste
- ENERGY STAR certified buildings use 35% fewer greenhouse gas emissions

INCREASING CORE DOMAIN CURRENTS

HIGHER POWER DENSITY & EFFICIENCY

HIGHER POWER PROCESS & PACKAGING

DISTRIBUTED & SCALABLE ARCHITECTURES

HIGHER TEMP & THERMAL MANAGEMENT

FASTER INTERFACES & CONNECTIVITY

LOWER VOLTAGES & TIGHTER TOLERANCES

FASTER TRANSIENT RESPONSE & BOM COST

SOC CORE ADAPTIVE VOLTAGE CONTROL

SELF-DIAGNOSTICS & PVT/AGING CALIBRATION

DIFFERENTIAL SENSING & SMART MONITORING

PDN EXTRACTION & SIMPLER PCB DESIGN

HV GALVANIC ISOLATION

EFFICIENT HV & LV POWER DELIVERY

48V LV POWER GRID & CONVERSION

EFFICIENT ENERGY MANAGEMENT SCHEME

ZONALIZATION & PREDICTIVE MAINTENANCE

NEXT GEN FUNCTIONAL SAFETY

HIGH EFFICIENCY ENERGY STORAGE SYS

USB-C/ PD EPR CONTROLLERS & POWER

EXTENDED BATTERY LIFETIME & HEALTH

LOWER IQ STANDBY & DEEP SLEEP MODES

SMALLER FORM FACTOR SOLUTIONS

ENERGY HARVESTING & HARNESSING
Efficient Energy Management & 48V Bus Adoption to reduce Distribution Losses on AI Servers & BEV’s

PFC & LLC Resonant DC-DC Converters

- Best efficiency across full load range
- Lowest output ripple
- Best transient response

Switched-Cap DC-DC Converters

Enabled Efficient Mobile Fast Charging possible with effective Thermal Management

48V Data Center / AI Server Power Solutions

First Stage

- Multi-Phase DC-DC Converter
- Multi-Phase DC-DC Converter

Second Stage

- Interleaved, Multiphase High-Switching-Freq DC-DC POL
- Interleaved, Multiphase DC-DC Converter

48V Domain (BUS)

- 48V 12V to 5V
- HPC Multi-Phase DC-DC POL
- 0.6 - 1.2V

- CPU
- GPU
- ASIC
- HDD
- PCIe

Adoption of 48V BEV LV Domain (Tesla Cyber Truck was first)

BEV 48V & AI Servers

- USB-C EPR PD
- Safety High-BW with AVP Multi-Phase DC-DC POL

NXP Proprietary
Summary

▪ AI certainly is becoming dominant in our lives and will cover all areas and application.

▪ While AI system improves the quality, productivity and safety of our lives, it introduces dramatic energy demand impact.

▪ The AI-induced energy demand challenge becomes more significant with Energy Shortage and Sustainability efforts across the world.

▪ All of this underscores the importance of efficient power management and energy management architectures solutions.

▪ While during my presentation I focused on examples utilizing High-Performance-Compute Processors on Software Defined Vehicles (SDV) and AI Data Centers Servers, other areas are not less critical and continue to be in focus at NXP, including:
 o USB-C EPR Power Delivery
 o Industrial and IoT systems: (Smart Home, Smart City, Factory Automation, Medical Imaging & Surgery)
 o personal wearables and smart personal health devices.
THANK YOU